Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfonso Benítez-Páez is active.

Publication


Featured researches published by Alfonso Benítez-Páez.


BMC Genomics | 2014

Microbiota diversity and gene expression dynamics in human oral biofilms

Alfonso Benítez-Páez; Pedro Belda-Ferre; Aurea Simón-Soro; Alex Mira

BackgroundMicro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied.ResultsUsing RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries.ConclusionsThe bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be associated to dental health.


RNA | 2012

The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy

Alfonso Benítez-Páez; Magda Villarroya; Armengod Me

Modifying RNA enzymes are highly specific for substrate-rRNA or tRNA-and the target position. In Escherichia coli, there are very few multisite acting enzymes, and only one rRNA/tRNA dual-specificity enzyme, pseudouridine synthase RluA, has been identified to date. Among the tRNA-modifying enzymes, the methyltransferase responsible for the m(2)A synthesis at purine 37 in a tRNA set still remains unknown. m(2)A is also present at position 2503 in the peptidyl transferase center of 23S RNA, where it is introduced by RlmN, a radical S-adenosyl-L-methionine (SAM) enzyme. Here, we show that E. coli RlmN is a dual-specificity enzyme that catalyzes methylation of both rRNA and tRNA. The ΔrlmN mutant lacks m(2)A in both RNA types, whereas the expression of recombinant RlmN from a plasmid introduced into this mutant restores tRNA modification. Moreover, RlmN performs m(2)A(37) synthesis in vitro using a tRNA chimera as a substrate. This chimera has also proved useful to characterize some tRNA identity determinants for RlmN and other tRNA modification enzymes. Our data suggest that RlmN works in a late step during tRNA maturation by recognizing a precise 3D structure of tRNA. RlmN inactivation increases the misreading of a UAG stop codon. Since loss of m(2)A(37) from tRNA is expected to produce a hyperaccurate phenotype, we believe that the error-prone phenotype exhibited by the ΔrlmN mutant is due to loss of m(2)A from 23S rRNA and, accordingly, that the m(2)A2503 modification plays a crucial role in the proofreading step occurring at the peptidyl transferase center.


Journal of Bacteriology | 2009

Structure-function analysis of Escherichia coli MnmG (GidA), a highly conserved tRNA-modifying enzyme.

Rong Shi; Magda Villarroya; Rafael Ruiz-Partida; Yunge Li; Ariane Proteau; Silvia Prado; Ismaı̈l Moukadiri; Alfonso Benítez-Páez; R Lomas; John Wagner; Allan Matte; Adrián Velázquez-Campoy; Armengod Me; Miroslaw Cygler

The MnmE-MnmG complex is involved in tRNA modification. We have determined the crystal structure of Escherichia coli MnmG at 2.4-A resolution, mutated highly conserved residues with putative roles in flavin adenine dinucleotide (FAD) or tRNA binding and MnmE interaction, and analyzed the effects of these mutations in vivo and in vitro. Limited trypsinolysis of MnmG suggests significant conformational changes upon FAD binding.


PLOS ONE | 2013

Detection of transient bacteraemia following dental extractions by 16S rDNA pyrosequencing: a pilot study.

Alfonso Benítez-Páez; Maximiliano Álvarez; Pedro Belda-Ferre; Susana Rubido; Alex Mira; Inmaculada Tomás

Objective The current manuscript aims to determine the prevalence, duration and bacterial diversity of bacteraemia following dental extractions using conventional culture-dependent methods and 16S rDNA pyrosequencing. Methods The study group included 8 patients undergoing dental extractions under general anaesthesia. Peripheral venous blood samples were collected at baseline, 30 seconds and 15 minutes after the dental extractions. Blood samples were analysed for bacteraemia applying conventional microbiological cultures under aerobic and anaerobic conditions as well as pyrosequencing using universal bacterial primers that target the 16S ribosomal DNA gene. Results Transient bacteremia was detected by culture-based methods in one sample at baseline time, in eight samples at 30 seconds, and in six samples at 15 minutes after surgical procedure; whereas bacteraemia was detected only in five blood samples at 30 seconds after dental extraction by using pyrosequencing. By applying conventional microbiological methods, a single microbial species was detected in six patients, and Streptococcus viridans was the most frequently cultured identified bacterium. By using pyrosequencing approaches however, the estimated blood microbial diversity after dental extractions was 13.4±1.7 bacterial families and 22.8±1.1 genera per sample. Conclusion The application of 16S rDNA pyrosequencing underestimated the prevalence and duration of bacteraemia following dental extractions, presumably due to not reaching the minimum DNA required for PCR amplification. However, this molecular technique, unlike conventional culture-dependent methods, revealed an extraordinarily high bacterial diversity of post-extraction bacteraemia. We propose that microorganisms recovered by culture may be only the tip of an iceberg of a really diverse microbiota whose viability and potential pathogenicity should be further studied.


International Journal of Systematic and Evolutionary Microbiology | 2014

Streptococcus dentisani sp. nov., a novel member of the mitis group

Anny Camelo-Castillo; Alfonso Benítez-Páez; Pedro Belda-Ferre; Raúl Cabrera-Rubio; Alex Mira

Genomic, taxonomic and biochemical studies were performed on two strains of α-haemolytic streptococci that showed them to be clustered with major members of the Streptococcus mitis group. These Gram-stain-positive strains were isolated from tooth surfaces of caries-free humans and showed the classical spherical shape of streptococcal species growing in chains. Sequence analysis from concatenated 16S and 23S rRNA gene and sodA genes showed that these strains belonged to the mitis group, but both of them clustered into a new phylogenetic branch. The genomes of these two isolates were sequenced, and whole-genome average nucleotide identity (ANI) demonstrated that these strains significantly differed from any streptococcal species, showing ANI values under 91 % even when compared with the phylogenetically closest species such as Streptococcus oralis and S. mitis. Biochemically, the two isolates also showed distinct metabolic features relative to closely related species, like α-galactosidase activity. From the results of the present study, the name Streptococcus dentisani sp. nov. is proposed to accommodate these novel strains, which have been deposited in open collections at the Spanish type Culture Collection (CECT) and Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), being respectively identified as Streptococcus dentisani Str. 7746 ( = CECT 8313 = DSM 27089) and Streptococcus dentisani Str. 7747(T) ( = CECT 8312(T) = DSM 27088(T)).


Forensic Science International | 2003

Results of the GEP-ISFG collaborative study on two Y-STRs tetraplexes: GEPY I (DYS461, GATA C4, DYS437 and DYS438) and GEPY II (DYS460, GATA A10, GATA H4 and DYS439)

Paula Sánchez-Diz; Leonor Gusmão; Sandra Beleza; Alfonso Benítez-Páez; Azucena Castro; O. Garcia; Lourdes Prieto Solla; Helena Geada; Pablo Martín; Begoña Martínez-Jarreta; M.F. Pinheiro; Eduardo Raimondi; Sandra Marı́a Silva de la Fuente; Maria C. Vide; Martin R. Whittle; María T. Zarrabeitia; Angel Carracedo; António Amorim

A collaborative exercise was carried out by the Spanish and Portuguese ISFG Working Group (GEP-ISFG) in order to evaluate the performance of two Y-chromosome STR PCR tetraplexes, which include the loci DYS461, GATA C4, DYS437 and DYS438 (GEPY I), and DYS460, GATA A10, GATA H4 and DYS439 (GEPY II). The participating laboratories were asked to type three samples for the eight markers, using a specific amplification protocol. In addition, two control samples, with known haplotypes, were provided. The results obtained by the 13 different participating laboratories were identical, except for two laboratories that failed to type correctly the same two samples for GATA C4. By sequence analyses, two different GATA C4 allele structures were found. One control sample (allele 21) and two questioned samples (allele 22, correctly typed by all the laboratories, and allele 25) presented the following repeat structure: (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)n, but different from the one found for allele 26 in one sample included in this exercise, as well as in the second control sample (allele 23), namely (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TGTA)2(TCTA)n. The collaborative exercise results proved that both Y-tetraplexes produce good amplification results, with the advantage of being efficiently typed using different separation and detection methodologies. However, since GATA C4 repeat presents a complex structure, with alleles differing in sequence structure, efficient denaturing conditions should be followed in order to avoid typing errors due to sizing problems.


Brain Behavior and Immunity | 2017

Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice.

Ángela Moya-Pérez; A. Perez-Villalba; Alfonso Benítez-Páez; I. Campillo; Yolanda Sanz

Emerging evidence suggests that there is a window of opportunity within the early developmental period, when microbiota-based interventions could play a major role in modulating the gut-brain axis and, thereby, in preventing mood disorders. This study aims at evaluating the effects and mode of action of Bifidobacterium pseudocatenulatum CECT 7765 in a murine model of chronic stress induced by maternal separation (MS). C57Bl/6J male breast-fed pups were divided into four groups, which were subjected or not to MS and supplemented with placebo or B. pseudocatenulatum CECT7765 until postnatal period (P) 21 and followed-up until P41. Behavioral tests were performed and neuroendocrine parameters were analyzed including corticosterone, cytokine/chemokine concentrations and neurotransmitters. Microbiota was also analyzed in stools by 16S rRNA gene sequencing. B. pseudocatenulatum CECT 7765 administration attenuated some aspects of the excessive MS-induced stress response of the hypothalamic-pituitary-adrenal (HPA) axis, particularly corticosterone production at baseline and in response to subsequent acute stress in adulthood. B. pseudocatenulatum CECT 7765 also down-regulated MS-induced intestinal inflammation (reducing interferon gamma [IFN-γ]) and intestinal hypercatecholaminergic activity (reducing dopamine [DA] and adrenaline [A] concentrations) at P21. These effects have a long-term impact on the central nervous system (CNS) of adult mice since MS mice fed B. pseudocatenulatum CECT 7765 showed lower anxiety levels than placebo-fed MS mice, as well as normal neurotransmitter levels in the hypothalamus. The anti-inflammatory effect of B. pseudocatenulatum CECT 7765 seemed to be related to an improvement in glucocorticoid sensitivity in mesenteric lymph node immunocompetent cells at P21. The administration of B. pseudocatenulatum CECT 7765 to MS animals also reversed intestinal dysbiosis affecting the proportions of ten Operational Taxonomic Units (OTUs) at P21, which could partly explain the restoration of immune, neuroendocrine and behavioral alterations caused by stress in early and later life. In summary, we show that B. pseudocatenulatum CECT 7765 is able to beneficially modulate the consequences of chronic stress on the HPA response produced by MS during infancy with long-lasting effects in adulthood, via modulation of the intestinal neurotransmitter and cytokine network with short and long-term consequences in brain biochemistry and behavior.


Briefings in Bioinformatics | 2012

A practical guide for the computational selection of residues to be experimentally characterized in protein families

Alfonso Benítez-Páez; Sonia Cárdenas-Brito; Andrés J. Gutiérrez

In recent years, numerous biocomputational tools have been designed to extract functional and evolutionary information from multiple sequence alignments (MSAs) of proteins and genes. Most biologists working actively on the characterization of proteins from a single or family perspective use the MSA analysis to retrieve valuable information about amino acid conservation and the functional role of residues in query protein(s). In MSAs, adjustment of alignment parameters is a key point to improve the quality of MSA output. However, this issue is frequently underestimated and/or misunderstood by scientists and there is no in-depth knowledge available in this field. This brief review focuses on biocomputational approaches complementary to MSA to help distinguish functional residues in protein families. These additional analyses involve issues ranging from phylogenetic to statistical, which address the detection of amino acids pivotal for protein function at any level. In recent years, a large number of tools has been designed for this very purpose. Using some of these relevant, useful tools, we have designed a practical pipeline to perform in silico studies with a view to improving the characterization of family proteins and their functional residues. This review-guide aims to present biologists a set of specially designed tools to study proteins. These tools are user-friendly as they use web servers or easy-to-handle applications. Such criteria are essential for this review as most of the biologists (experimentalists) working in this field are unfamiliar with these biocomputational analysis approaches.


RNA | 2012

Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase

Alfonso Benítez-Páez; Magda Villarroya; Armengod Me

RsmG is an AdoMet-dependent methyltransferase responsible for the synthesis of m(7)G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m(7)G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Here, we explore the mechanisms controlling RsmG expression and activity, which may somehow respond to the demand set by the amount of rRNA. We confirm that rsmG is the second member in a bicistronic operon and demonstrate that rsmG also has its own promoter, which appears, in actively growing cells, as a control device to offset both the relatively low stability of RsmG and inhibition of the operon promoter. RsmG levels decrease under conditions that down-regulate rRNA synthesis. However, coordination between rRNA and RsmG expression does not seem to occur at the level of transcription initiation. Instead, it might depend on the activity of an inverted repeated region, located between the rsmG promoter and ribosome binding site, which we show to work as a weak transcriptional terminator. To gain insights into the enzymatic mechanism of RsmG, highly conserved residues were mutated and the abilities of the resulting proteins to confer streptomycin resistance, to modify rRNA, and to bind AdoMet were explored. Our data demonstrate for the first time the critical importance of some residues located in the active site of Escherichia coli RsmG for the m(7)G modification process and suggest a role for them in rRNA binding and catalysis.


GigaScience | 2017

Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer

Alfonso Benítez-Páez; Yolanda Sanz

Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems.

Collaboration


Dive into the Alfonso Benítez-Páez's collaboration.

Top Co-Authors

Avatar

Yolanda Sanz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin J. Portune

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Olivares

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amalia Capilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge