Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfonso F. Davila is active.

Publication


Featured researches published by Alfonso F. Davila.


Nature | 2009

Stability against freezing of aqueous solutions on early Mars

Alberto G. Fairén; Alfonso F. Davila; Luis Gago-Duport; Ricardo Amils; Christopher P. McKay

Many features of the Martian landscape are thought to have been formed by liquid water flow and water-related mineralogies on the surface of Mars are widespread and abundant. Several lines of evidence, however, suggest that Mars has been cold with mean global temperatures well below the freezing point of pure water. Martian climate modellers considering a combination of greenhouse gases at a range of partial pressures find it challenging to simulate global mean Martian surface temperatures above 273 K, and local thermal sources cannot account for the widespread distribution of hydrated and evaporitic minerals throughout the Martian landscape. Solutes could depress the melting point of water in a frozen Martian environment, providing a plausible solution to the early Mars climate paradox. Here we model the freezing and evaporation processes of Martian fluids with a composition resulting from the weathering of basalts, as reflected in the chemical compositions at Mars landing sites. Our results show that a significant fraction of weathering fluids loaded with Si, Fe, S, Mg, Ca, Cl, Na, K and Al remain in the liquid state at temperatures well below 273 K. We tested our model by analysing the mineralogies yielded by the evolution of the solutions: the resulting mineral assemblages are analogous to those actually identified on the Martian surface. This stability against freezing of Martian fluids can explain saline liquid water activity on the surface of Mars at mean global temperatures well below 273 K.


Astrobiology | 2010

Hygroscopic Salts and the Potential for Life on Mars

Alfonso F. Davila; Luis Gago Duport; Riccardo Melchiorri; Jochen Jänchen; Sergio Valea; Asunción de los Ríos; Alberto G. Fairén; Diedrich T.F. Möhlmann; Christopher P. McKay; Carmen Ascaso; Jacek Wierzchos

Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.


International Microbiology | 2010

Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert

Sergio Valea; Carmen Ascaso; Alfonso F. Davila; Jan Kastovsky; Christopher P. McKay; Benito Gómez-Silva; Jacek Wierzchos

SUMMARY Molecular biology and microscopy techniques were used to characterize the microbial communities inside halite evaporites from different parts of the Atacama Desert. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the evaporite rocks harbor communities predominantly made up of cyanobacteria, along with heterotrophic bacteria and archaea. Different DGGE profiles were obtained for the different sites, with the exception of the cyanobacterial profile, in which only one phylotype was detected across the three sites examined. Chroococcidiopsis-like cells were the only cyanobacterial components of the rock samples, although the phylogenetic study revealed their closer genetic affinity to Halothece genera. Gene sequences of the heterotrophic bacteria and archaea indicated their proximity to microorganisms found in other hypersaline environments. Microorganisms colonizing these halites formed microbial aggregates in the pore spaces between halite crystals, where microbial interactions occur. In this exceptional, salty, porous halite rock habitat, microbial consortia with a community structure probably conditioned by the environmental conditions occupy special microhabitats with physical and chemical properties that promote their survival.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Noachian and more recent phyllosilicates in impact craters on Mars

Alberto G. Fairén; Vincent F. Chevrier; Oleg V. Abramov; Giuseppe A. Marzo; P. Gavin; Alfonso F. Davila; Livio L. Tornabene; Janice L. Bishop; Ted L. Roush; C. Gross; T. Kneissl; Esther R. Uceda; James M. Dohm; Dirk Schulze-Makuch; J. Alexis P. Rodriguez; Ricardo Amils; Christopher P. McKay

Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.


Astrobiology | 2010

Astrobiology through the Ages of Mars: The Study of Terrestrial Analogues to Understand the Habitability of Mars

Alberto G. Fairén; Alfonso F. Davila; Darlene Lim; Nathan Earl Bramall; Rosalba Bonaccorsi; Jhony Zavaleta; Esther R. Uceda; Carol R. Stoker; Jacek Wierzchos; James M. Dohm; Ricardo Amils; Dale T. Andersen; Christopher P. McKay

Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.


Philosophical Transactions of the Royal Society A | 2010

Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy

Petr Vítek; H.G.M. Edwards; Jan Jehlička; Carmen Ascaso; A. De Los Ríos; Sergio Valea; S. E. Jorge-Villar; Alfonso F. Davila; Jacek Wierzchos

The hyper-arid core of the Atacama Desert (Chile) is the driest place on Earth and is considered a close analogue to the extremely arid conditions on the surface of Mars. Microbial life is very rare in soils of this hyper-arid region, and autotrophic micro-organisms are virtually absent. Instead, photosynthetic micro-organisms have successfully colonized the interior of halite crusts, which are widespread in the Atacama Desert. These endoevaporitic colonies are an example of life that has adapted to the extreme dryness by colonizing the interior of rocks that provide enhanced moisture conditions. As such, these colonies represent a novel example of potential life on Mars. Here, we present non-destructive Raman spectroscopical identification of these colonies and their organic remnants. Spectral signatures revealed the presence of UV-protective biomolecules as well as light-harvesting pigments pointing to photosynthetic activity. Compounds of biogenic origin identified within these rocks differed depending on the origins of specimens from particular areas in the desert, with differing environmental conditions. Our results also demonstrate the capability of Raman spectroscopy to identify biomarkers within rocks that have a strong astrobiological potential.


Mbio | 2013

Colonization patterns of soil microbial communities in the Atacama Desert

Alexander Crits-Christoph; Courtney K. Robinson; Tyler Barnum; W. Florian Fricke; Alfonso F. Davila; Bruno Jedynak; Christopher P. McKay; Jocelyne DiRuggiero

BackgroundThe Atacama Desert is one of the driest deserts in the world and its soil, with extremely low moisture, organic carbon content, and oxidizing conditions, is considered to be at the dry limit for life.ResultsAnalyses of high throughput DNA sequence data revealed that bacterial communities from six geographic locations in the hyper-arid core and along a North-South moisture gradient were structurally and phylogenetically distinct (ANOVA test for observed operating taxonomic units at 97% similarity (OTU0.03), P <0.001) and that communities from locations in the hyper-arid zone displayed the lowest levels of diversity. We found bacterial taxa similar to those found in other arid soil communities with an abundance of Rubrobacterales, Actinomycetales, Acidimicrobiales, and a number of families from the Thermoleophilia. The extremely low abundance of Firmicutes indicated that most bacteria in the soil were in the form of vegetative cells. Integrating molecular data with climate and soil geochemistry, we found that air relative humidity (RH) and soil conductivity significantly correlated with microbial communities’ diversity metrics (least squares linear regression for observed OTU0.03 and air RH and soil conductivity, P <0.001; UniFrac PCoA Spearman’s correlation for air RH and soil conductivity, P <0.0001), indicating that water availability and salt content are key factors in shaping the Atacama soil microbiome. Mineralization studies showed communities actively metabolizing in all soil samples, with increased rates in soils from the southern locations.ConclusionsOur results suggest that microorganisms in the driest soils of the Atacama Desert are in a state of stasis for most of the time, but can potentially metabolize if presented with liquid water for a sufficient duration. Over geological time, rare rain events and physicochemical factors potentially played a major role in selecting micro-organisms that are most adapted to extreme desiccating conditions.


Astrobiology | 2011

A Two-Tiered Approach to Assessing the Habitability of Exoplanets

Dirk Schulze-Makuch; Abel Méndez; Alberto G. Fairén; Philip von Paris; Carol Turse; Grayson Boyer; Alfonso F. Davila; Marina Resendes de Sousa António; David C. Catling; Louis N. Irwin

In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.


Astrobiology | 2013

The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

Christopher P. McKay; Carol R. Stoker; Brian Glass; Arwen I. Davé; Alfonso F. Davila; Jennifer Lynne Heldmann; Margarita Marinova; Alberto G. Fairén; Richard C. Quinn; Kris Zacny; Gale Paulsen; Peter W. H. Smith; Victor Parro; Dale T. Andersen; Michael H. Hecht; Denis Lacelle; Wayne H. Pollard

The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers, interest in returning them to Earth would be high.


The ISME Journal | 2016

Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica

Jacqueline Goordial; Alfonso F. Davila; Denis Lacelle; Wayne H. Pollard; Margarita Marinova; Charles W. Greer; Jocelyn DiRuggiero; Christopher P. McKay; Lyle G. Whyte

Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.

Collaboration


Dive into the Alfonso F. Davila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacek Wierzchos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Dohm

Water Resources University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge