Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfonso Giovane is active.

Publication


Featured researches published by Alfonso Giovane.


Plant Physiology | 2007

Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea.

Vincenzo Lionetti; Alessandro Raiola; Laura Camardella; Alfonso Giovane; Nicolai Obel; Markus Pauly; Francesco Favaron; Felice Cervone; Daniela Bellincampi

Pectin, one of the main components of plant cell wall, is secreted in a highly methylesterified form and is demethylesterified in muro by pectin methylesterase (PME). The action of PME is important in plant development and defense and makes pectin susceptible to hydrolysis by enzymes such as endopolygalacturonases. Regulation of PME activity by specific protein inhibitors (PMEIs) can, therefore, play a role in plant development as well as in defense by influencing the susceptibility of the wall to microbial endopolygalacturonases. To test this hypothesis, we have constitutively expressed the genes AtPMEI-1 and AtPMEI-2 in Arabidopsis (Arabidopsis thaliana) and targeted the proteins into the apoplast. The overexpression of the inhibitors resulted in a decrease of PME activity in transgenic plants, and two PME isoforms were identified that interacted with both inhibitors. While the content of uronic acids in transformed plants was not significantly different from that of wild type, the degree of pectin methylesterification was increased by about 16%. Moreover, differences in the fine structure of pectins of transformed plants were observed by enzymatic fingerprinting. Transformed plants showed a slight but significant increase in root length and were more resistant to the necrotrophic fungus Botrytis cinerea. The reduced symptoms caused by the fungus on transgenic plants were related to its impaired ability to grow on methylesterified pectins.


The Plant Cell | 2005

Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein

Adele Di Matteo; Alfonso Giovane; Alessandro Raiola; Laura Camardella; Daniele Bonivento; Giulia De Lorenzo; Felice Cervone; Daniela Bellincampi; Demetrius Tsernoglou

Pectin, one of the main components of the plant cell wall, is secreted in a highly methyl-esterified form and subsequently deesterified in muro by pectin methylesterases (PMEs). In many developmental processes, PMEs are regulated by either differential expression or posttranslational control by protein inhibitors (PMEIs). PMEIs are typically active against plant PMEs and ineffective against microbial enzymes. Here, we describe the three-dimensional structure of the complex between the most abundant PME isoform from tomato fruit (Lycopersicon esculentum) and PMEI from kiwi (Actinidia deliciosa) at 1.9-Å resolution. The enzyme folds into a right-handed parallel β-helical structure typical of pectic enzymes. The inhibitor is almost all helical, with four long α-helices aligned in an antiparallel manner in a classical up-and-down four-helical bundle. The two proteins form a stoichiometric 1:1 complex in which the inhibitor covers the shallow cleft of the enzyme where the putative active site is located. The four-helix bundle of the inhibitor packs roughly perpendicular to the main axis of the parallel β-helix of PME, and three helices of the bundle interact with the enzyme. The interaction interface displays a polar character, typical of nonobligate complexes formed by soluble proteins. The structure of the complex gives an insight into the specificity of the inhibitor toward plant PMEs and the mechanism of regulation of these enzymes.


Biochimica et Biophysica Acta | 2008

High glucose downregulates endothelial progenitor cell number via SIRT1

Maria Luisa Balestrieri; Monica Rienzo; Francesca Felice; Raffaele Rossiello; Vincenzo Grimaldi; Lara Milone; Amelia Casamassimi; Luigi Servillo; Bartolomeo Farzati; Alfonso Giovane; Claudio Napoli

Increasing evidence indicates that mammalian SIRT1 mediates calorie restriction and influences lifespan regulating a number of biological molecules such as FoxO1. SIRT1 controls the angiogenic activity of endothelial cells via deacetylation of FoxO1. Endothelial dysfunction and reduced new blood vessel growth in diabetes involve a decreased bioactivity of endothelial progenitor cells (EPCs) via repression of FoxO1 transcriptional activity. The relative contribution of SIRT1 with respect to the direct effects of high glucose on EPC number is poorly understood. We report that treatment of EPCs with high glucose for 3 days determined a consistent downregulation of EPC positive to DiLDL/lectin staining and, interestingly, this was associated with reduced SIRT1 expression levels and enzyme activity, and increased acetyl-FoxO1 expression levels. Moreover, EPCs responded to high glucose with major changes in the expression levels of cell metabolism-, cell cycle-, and oxidative stress-related genes or proteins. Proteomic analysis shows increased expression of nicotinamide phosphoribosyl transferase and mitochondrial superoxide dismutase whereas a glucose-related heat shock protein is reduced. These findings show that SIRT1 is a critical modulator of EPCs dysfunction during alteration of glucose metabolism.


FEBS Letters | 2004

Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors1

Alessandro Raiola; Laura Camardella; Alfonso Giovane; Benedetta Mattei; G. De Lorenzo; Felice Cervone; Daniela Bellincampi

We have identified, expressed and characterized two genes from Arabidopsis thaliana (AtPMEI‐1 and AtPMEI‐2) encoding functional inhibitors of pectin methylesterases. AtPMEI‐1 and AtPMEI‐2 are cell wall proteins sharing many features with the only pectin methylesterase inhibitor (PMEI) characterized so far from kiwi fruit. Both Arabidopsis proteins interact with and inhibit plant‐derived pectin methylesterases (PMEs) but not microbial enzymes. The occurrence of functional PMEIs in Arabidopsis indicates that a mechanism of controlling pectin esterification by inhibition of endogenous PMEs is present in different plant species.


Proceedings of the National Academy of Sciences of the United States of America | 2010

CXCR4/YY1 inhibition impairs VEGF network and angiogenesis during malignancy

Filomena de Nigris; Valeria Crudele; Alfonso Giovane; Amelia Casamassimi; Antonio Giordano; Hermes Garban; Francesco Cacciatore; Francesca Pentimalli; Diana C. Márquez-Garbán; Antonella Petrillo; Letizia Cito; Linda Sommese; Andrea Fiore; Mario Petrillo; Alfredo Siani; Antonio Barbieri; Claudio Arra; Franco Rengo; Toshio Hayashi; Mohammed Al-Omran; Louis J. Ignarro; Claudio Napoli

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1α at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Phytochemistry | 1990

Pectin methyl esterase from Actinidia chinensis fruits

Alfonso Giovane; Lucio Quagliuolo; Domenico Castaldo; Luigi Servillo; Ciro Balestrieri

Abstract Pectin methylesterase (EC 3.1.1.11) from Actinidia chinensis fruit, cv Hayward, consists of two forms (PME1 and PME2) separable by heparin-Sepharose chromatography. The two forms have been purified to homogeneity to respective specific activities of 933 and 974 units mg−1. The most efficient step in the purification procedure was the affinity chromatography on heparin-Sepharose column. The enzymatic preparations exhibit the same Mr in native as well as under denaturing conditions; a value of 57,000 was found in ultracentrifugal experiments. The two forms possess the same isoelectric point of 7.3, but differ in their affinity toward citrus pectin having a Km of 1.82 mg ml−1 for PME1 and 0.76 mg ml−1 for PME2. They also differ in thermostability, where PME1 is more stable than PME2. The two forms are glycoproteins with a different degreeof glycosylation as shown by different retention time on concanavalin A-Sepharose with respect to a glucose gradient.


Diabetes | 2015

Sirtuin 6 Expression and Inflammatory Activity in Diabetic Atherosclerotic Plaques: Effects of Incretin Treatment

Maria Luisa Balestrieri; Maria Rosaria Rizzo; Michelangela Barbieri; Pasquale Paolisso; Nunzia D’Onofrio; Alfonso Giovane; Mario Siniscalchi; Fabio Minicucci; Celestino Sardu; Davide D’andrea; Ciro Mauro; Franca Ferraraccio; Luigi Servillo; Fabio Chirico; Pasquale Caiazzo; Giuseppe Paolisso; Raffaele Marfella

The role of sirtuin 6 (SIRT6) in atherosclerotic progression of diabetic patients is unknown. We evaluated SIRT6 expression and the effect of incretin-based therapies in carotid plaques of asymptomatic diabetic and nondiabetic patients. Plaques were obtained from 52 type 2 diabetic and 30 nondiabetic patients undergoing carotid endarterectomy. Twenty-two diabetic patients were treated with drugs that work on the incretin system, GLP-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors for 26 ± 8 months before undergoing the endarterectomy. Compared with nondiabetic plaques, diabetic plaques had more inflammation and oxidative stress, along with a lesser SIRT6 expression and collagen content. Compared with non-GLP-1 therapy–treated plaques, GLP-1 therapy–treated plaques presented greater SIRT6 expression and collagen content, and less inflammation and oxidative stress, indicating a more stable plaque phenotype. These results were supported by in vitro observations on endothelial progenitor cells (EPCs) and endothelial cells (ECs). Indeed, both EPCs and ECs treated with high glucose (25 mmol/L) in the presence of GLP-1 (100 nmol/L liraglutide) presented a greater SIRT6 and lower nuclear factor-κB expression compared with cells treated only with high glucose. These findings establish the involvement of SIRT6 in the inflammatory pathways of diabetic atherosclerotic lesions and suggest its possible positive modulation by incretin, the effect of which is associated with morphological and compositional characteristics of a potential stable plaque phenotype.


Molecular & Cellular Proteomics | 2010

Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei

Concetta Ambrosino; Roberta Tarallo; Angela Bamundo; Danila Cuomo; Gianluigi Franci; Giovanni Nassa; Ornella Paris; Maria Ravo; Alfonso Giovane; Nicola Zambrano; Tatiana Lepikhova; Olli A. Jänne; Marc Baumann; Tuula A. Nyman; Luigi Cicatiello; Alessandro Weisz

Estrogen receptor α (ERα) is a modular protein of the steroid/nuclear receptor family of transcriptional regulators that upon binding to the hormone undergoes structural changes, resulting in its nuclear translocation and docking to specific chromatin sites. In the nucleus, ERα assembles in multiprotein complexes that act as final effectors of estrogen signaling to the genome through chromatin remodeling and epigenetic modifications, leading to dynamic and coordinated regulation of hormone-responsive genes. Identification of the molecular partners of ERα and understanding their combinatory interactions within functional complexes is a prerequisite to define the molecular basis of estrogen control of cell functions. To this end, affinity purification was applied to map and characterize the ERα interactome in hormone-responsive human breast cancer cell nuclei. MCF-7 cell clones expressing human ERα fused to a tandem affinity purification tag were generated and used to purify native nuclear ER-containing complexes by IgG-Sepharose affinity chromatography and glycerol gradient centrifugation. Purified complexes were analyzed by two-dimensional DIGE and mass spectrometry, leading to the identification of a ligand-dependent multiprotein complex comprising β-actin, myosins, and several proteins involved in actin filament organization and dynamics and/or known to participate in actin-mediated regulation of gene transcription, chromatin dynamics, and ribosome biogenesis. Time course analyses indicated that complexes containing ERα and actin are assembled in the nucleus early after receptor activation by ligands, and gene knockdown experiments showed that gelsolin and the nuclear isoform of myosin 1c are key determinants for assembly and/or stability of these complexes. Based on these results, we propose that the actin network plays a role in nuclear ERα actions in breast cancer cells, including coordinated regulation of target gene activity, spatial and functional reorganization of chromatin, and ribosome biogenesis.


Proteins | 2003

Tomato pectin methylesterase: Modeling, fluorescence, and inhibitor interaction studies—comparison with the bacterial (Erwinia chrysanthemi) enzyme

Rossana D'Avino; Laura Camardella; Tove M.I.E. Christensen; Alfonso Giovane; Luigi Servillo

The molecular model of Lycopersicon esculentum (tomato) pectin methylesterase (PME) was built by using the X‐ray crystal structure of PME from the phytopathogenic bacterium Erwinia chrysanthemi as a template. The overall structure and the position of catalytically important residues (Asp132, Asp 153, and Arg 221, located at the bottom of the active site cleft) are conserved. Instead, loop regions forming the walls of the catalytic site are much shorter and form a less deep cleft, as already revealed by the carrot PME crystal structure. The protein inhibitor of pectin methylesterase (PMEI) isolated from kiwi fruit binds tomato PME with high affinity. Conversely, no complex formation between the inhibitor and PME from E. chrysanthemi is observed, and the activity of this enzyme is unaffected by the presence of the inhibitor. Fluorescence quenching experiments on tomato PME and on PME‐PMEI complex suggest that tryptophanyl residues present in the active site region are involved in the interaction and that the inhibitor interacts with plant PME at the level of the active site. We also suggest that the more open active site cleft of tomato PME allows the interaction with the inhibitor. Conversely, the narrow and deep cleft of the active site of E. chrysanthemi PME hinders this interaction. The pH‐dependent changes in fluorescence emission intensity observed in tomato PME could arise as the result of protonation of an Asp residue with unusually high pKa, thus supporting the hypothesis that Asp132 acts as acid/base in the catalytic cycle. Proteins 2003;53:000–000.


Cellular and Molecular Life Sciences | 1980

Myoglobin in the heart ventricle of tuna and other fishes.

Alfonso Giovane; G. Greco; A. Maresca; Bruno Tota

The myoglobin content in the hearts of several fishes is positively correlated with the ecological physiology of the species. In the tuna heart, where the highest myoglobin values are found, the logarithmic relationship between myoglobin content and body weight is reported.

Collaboration


Dive into the Alfonso Giovane's collaboration.

Top Co-Authors

Avatar

Luigi Servillo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Maria Luisa Balestrieri

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ciro Balestrieri

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Domenico Castaldo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Lucio Quagliuolo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Claudio Napoli

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Rosario Casale

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nunzia D’Onofrio

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge