Alfonso Olivos-García
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alfonso Olivos-García.
PLOS ONE | 2012
Julien Santi-Rocca; Sherri Smith; Christian Weber; Erika Pineda; Chung-Chau Hon; Emma Saavedra; Alfonso Olivos-García; Sandrine Rousseau; Marie-Agnès Dillies; Jean-Yves Coppée; Nancy Guillén
The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR). The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO) triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO) and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i) dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii) induction of DNA repair and redox gene expression and iii) up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis.
International Journal for Parasitology | 2009
Espiridión Ramos-Martínez; Alfonso Olivos-García; Emma Saavedra; Mario Nequiz; Ernesto Sánchez; Eusebio Tello; Mohamed El-Hafidi; Andrés Saralegui; Erika Pineda; José Delgado; Irmgard Montfort; Ruy Pérez-Tamayo
Entamoeba histolytica virulence has been attributed to several amoebic molecules such as adhesins, amoebapores and cysteine proteinases, but supporting evidence is either partial or indirect. In this work we compared several in vitro and in vivo features of both virulent E. histolytica (vEh) and non-virulent E. histolytica (nvEh) axenic HM-1 IMSS strains, such as complement resistance, proteinase activity, haemolytic, phagocytic and cytotoxic capacities, survival in mice caecum, and susceptibility to O(2). The only difference observed was a higher in vitro susceptibility of nvEh to O(2). The molecular mechanism of that difference was analyzed in both groups of amoebae after high O(2) exposure. vEh O(2) resistance correlated with: (i) higher O(2) reduction (O(2)(-) and H(2)O(2) production); (ii) increased H(2)O(2) resistance and thiol peroxidase activity, and (iii) reversible pyruvate: ferredoxin oxidoreductase (PFOR) inhibition. Despite the high level of carbonylated proteins in nvEh after O(2) exposure, membrane oxidation by reactive oxygen species was not observed. These results suggest that the virulent phenotype of E. histolytica is related to the greater ability to reduce O(2) and H(2)O(2) as well as PFOR reactivation, whereas nvEh undergoes irreversible PFOR inhibition resulting in metabolic failure and amoebic death.
FEBS Journal | 2010
Erika Pineda; Rusely Encalada; José S. Rodríguez-Zavala; Alfonso Olivos-García; Rafael Moreno-Sánchez; Emma Saavedra
The in vitro Entamoeba histolytica pyruvate:ferredoxin oxidoreductase (EhPFOR) kinetic properties and the effect of oxidative stress on glycolytic pathway enzymes and fluxes in live trophozoites were evaluated. EhPFOR showed a strong preference for pyruvate as substrate over other oxoacids. The enzyme was irreversibly inactivated by a long period of saturating O2 exposure (IC50 0.034 mm), whereas short‐term exposure (< 30 min) leading to > 90% inhibition allowed for partial restoration by addition of Fe2+. CoA and acetyl‐CoA prevented, whereas pyruvate exacerbated, inactivation induced by short‐term saturating O2 exposure. Superoxide dismutase was more effective than catalase in preventing the inactivation, indicating that reactive oxygen species (ROS) were involved. Hydrogen peroxide caused inactivation in an Fe2+‐reversible fashion that was not prevented by the coenzymes, suggesting different mechanisms of enzyme inactivation by ROS. Structural analysis on an EhPFOR 3D model suggested that the protection against ROS provided by coenzymes could be attributable to their proximity to the Fe–S clusters. After O2 exposure, live parasites displayed decreased enzyme activities only for PFOR (90%) and aldehyde dehydrogenase (ALDH; 68%) of the bifunctional aldehyde–alcohol dehydrogenase (EhADH2), whereas acetyl‐CoA synthetase remained unchanged, explaining the increased acetate and lowered ethanol fluxes. Remarkably, PFOR and ALDH activities were restored after return of the parasites to normoxic conditions, which correlated with higher ethanol and lower acetate fluxes. These results identified amebal PFOR and ALDH of EhADH2 activities as markers of oxidative stress, and outlined their relevance as significant controlling steps of energy metabolism in parasites subjected to oxidative stress.
Foodborne Pathogens and Disease | 2010
Nurulhasanah Othman; Zeehaida Mohamed; Jaco J. Verweij; Lim Boon Huat; Alfonso Olivos-García; Chen Yeng; Rahmah Noordin
Entamoeba histolytica is the second major cause of liver abscess disease in humans, particularly in developing countries. Recently, DNA molecular-based methods have been employed to enhance the detection of E. histolytica in either pus or stool specimens. In this study, the results of real-time polymerase chain reaction (PCR) to detect E. histolytica DNA in pus from liver abscess cases were compared with those of indirect hemagglutination assay on the corresponding serum samples. Bacterial cultures were also performed on the pus samples for the diagnosis of pyogenic liver abscess. The real-time PCR detected E. histolytica DNA in 23 of 30 (76.7%) pus samples, when compared with 14 of 30 (46.7%) serum samples in which anti-Entamoeba antibodies were detected by indirect hemagglutination assay and 4 of 30 (13.3%) pus samples that showed bacterial infection by culture. The use of real-time PCR is a promising detection method for diagnosis and epidemiology assessment of amoebic liver abscess.
Infection, Genetics and Evolution | 2009
Alfonso Olivos-García; Emma Saavedra; Espiridión Ramos-Martínez; Mario Nequiz; Ruy Pérez-Tamayo
For many years virulence of pathogenic Entamoeba histolytica has been attributed to the capacity of the parasite to destroy tissues through the expression and/or secretion of various molecules. Such view is supported mainly by in vitro experimentation, whereas data obtained by using animal models of the disease have clearly demonstrated that the hosts inflammatory response is primarily responsible for tissue damage. This review analyzes the content and/or activity of some of the presumed toxic amebic molecules present in amebic strains with different degrees of virulence compared to various parasite in vitro functions that are supposed to correlate with in vivo virulence. The analysis suggests that amebic virulence is primarily determined by the parasites capacity to adapt and survive the aerobic conditions present in animal tissues. This initial episode in the host-parasite relationship is an absolute requirement for the further development of tissue lesions, which result from the concerted action of many molecules derived from both, the host and the parasite.
Parasitology | 2004
Alfonso Olivos-García; Eusebio Tello; Mario Nequiz-Avendaño; Augusto González-Canto; Rosario López-Vancell; M.C. García de León; Irmgard Montfort; Ruy Pérez-Tamayo
Axenic trophozoites of Entamoeba histolytica strain HM1-IMSS grown in vitro in the presence of E-64, a potent irreversible inhibitor of cysteine proteinases, preserved their viability, their rate of replication, their resistance to complement, their haemolytic capacity and their ability to destroy target cells, despite complete inhibition of total cysteine proteinase activity. On the other hand, their erythrophagocytic capacity and their ability to decrease TER of MDCK cells was partially decreased. The same trophozoites injected into the portal vein of hamsters receiving a maintaining dose of E-64 failed to cause tissue damage and were rapidly eliminated. Our results suggest that amoebic cysteine proteinase activity is not required for amoebic functions in in vitro conditions, but that it becomes necessary for survival of trophozoites in in vivo conditions, whatever other role (if any) it may play in the parasites virulence.
FEBS Letters | 2013
Erika Pineda; Rusely Encalada; Alfonso Olivos-García; Mario Nequiz; Rafael Moreno-Sánchez; Emma Saavedra
By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde–alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux‐control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and −0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux‐control on the carbon end‐product formation of amoebas subjected to aerobic conditions.
Cellular Microbiology | 2015
Fabiola Santos; Mario Nequiz; Nora Adriana Hernández-Cuevas; Kahory Hernández; Erika Pineda; Rusely Encalada; Nancy Guillén; Erika Rubí Luis-García; Andrés Saralegui; Emma Saavedra; Ruy Pérez-Tamayo; Alfonso Olivos-García
Adhesion to cells, cytotoxicity and proteolysis are functions required for virulence and pathogenicity of Entamoeba histolytica. However, there was no correlation between these in vitro functions and the early elimination of non‐pathogenic E. dispar and non‐virulent E. histolytica (nvEh) in experimental amoebic liver abscesses developed in hamsters. Thus, additional functions may be involved in amoebic pathogenicity and virulence. In the present study, an integral experimental assessment, including innovative technologies for analyses of amoebal pathophysiology, cell biology, biochemistry and transcriptomics, was carried out to elucidate whether other cellular processes are involved in amoebal pathogenicity and virulence. In comparison with virulent E. histolytica, the data indicated that the main reasons for the early clearance of nvEh from hamster liver are decreased intracellular H2O2 detoxification rate and deficient heat shock protein expression, whereas for E. dispar, it is a relatively lower capacity for O2 reduction. Therefore, maintenance of an intracellular hypoxic environment combined with the induction of an adequate parasite response to oxidative stress are essential requirements for Entamoeba survival in the liver, and therefore for pathogenicity.
FEBS Journal | 2015
Erika Pineda; Rusely Encalada; Citlali Vázquez; Mario Nequiz; Alfonso Olivos-García; Rafael Moreno-Sánchez; Emma Saavedra
The steps that control the Entamoeba histolytica glycolytic flux were here identified by elasticity analysis, an experimental approach of metabolic control analysis. The concentrations of glycolytic metabolites were gradually varied in live trophozoites by (a) feeding with different glucose concentrations and (b) inhibiting the final pathway steps; in parallel, the changes in the pathway flux were determined. From the metabolite concentration–flux relationship, the elasticity coefficients of individual or groups of pathway reactions were determined and used to calculate their respective degrees of control on the glycolytic flux (flux control coefficients). The results indicated that the pathway flux was mainly controlled (72–86%) by the glucose transport/hexokinase/glycogen degradation group of reactions and by bifunctional aldehyde‐alcohol dehydrogenase (ADHE; 18%). Further, inhibition of the first pathway reactions with 2‐deoxyglucose (2DOG) decreased the glycolytic flux and ATP content by 75% and 50%, respectively. Cell viability was also decreased by 2DOG (25%) and more potently (50%) by 2DOG plus the ADHE inhibitor tetraethylthiuram disulfide (disulfiram). Biosate as an alternative carbon (amino acid) source was unable to replace glucose for ATP supply, which indicated that glucose was the main nutrient for amoebal ATP synthesis and survival. These results indicated that glycolysis in the parasite is mainly controlled by the initial pathway reactions and that their inhibition can decrease the parasite energy load and survival.
BMC Infectious Diseases | 2013
Tan Zi Ning; Wong Weng Kin; Rahmah Noordin; See Too Wei Cun; Foo Phiaw Chong; Zeehaida Mohamed; Alfonso Olivos-García; Lim Boon Huat
BackgroundAmoebic liver abscess (ALA) is the most frequent clinical presentation of extra-intestinal amoebiasis. The diagnosis of ALA is typically based on the developing clinical symptoms, characteristic changes on radiological imaging and serology. Numerous serological tests have been introduced for the diagnosis of ALA, either detecting circulating amoebic antigens or antibodies. However those tests show some pitfalls in their efficacy and/or the preparation of the tests are costly and tedious. The commercial IHA kit that used crude antigen was reported to be useful in diagnosis of ALA, however high antibody background in endemic areas may cause problems in its interpretation. Thus, discovery of well-defined antigen(s) is urgently needed to improve the weaknesses of current serodiagnostic tests.MethodsCrude antigen of E. histolytica was analysed by 2-DE and Western blot to identify a protein of diagnostic potential for ALA. The corresponding gene of the antigenic protein was then cloned, expressed and the purified recombinant protein was subsequently evaluated for serodiagnosis of ALA in an indirect ELISA format.ResultsAnalysis of crude antigen showed that phosphoglucomutase (PGM) has the diagnostic potential. Recombinant PGM (rPGM) showed 79.17% (19/24) sensitivity and 86.67% (195/225) specificity in diagnosis of ALA based on the COV of mean +1SD. There was no significant difference between rPGM-ELISA and IHA diagnostic kit in the diagnosis of ALA in terms of sensitivity and specificity at p-value < 0.05.ConclusionIn conclusion, rPGM-ELISA is found to be useful for serodiagnosis of ALA. Future studies will determine whether rPGM-ELISA also detects antibodies produced in amoebic dysentery and asymptomatic cases.