Alfonso Varela-López
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alfonso Varela-López.
Journal of Agricultural and Food Chemistry | 2016
Sadia Afrin; Massimiliano Gasparrini; Tamara Y. Forbes-Hernandez; Patricia Reboredo-Rodríguez; Bruno Mezzetti; Alfonso Varela-López; Francesca Giampieri; Maurizio Battino
The potential health benefits associated with dietary intake of fruits have attracted increasing interest. Among berries, the strawberry is a rich source of several nutritive and non-nutritive bioactive compounds, which are implicated in various health-promoting and disease preventive effects. A plethora of studies have examined the benefits of strawberry consumption, such as prevention of inflammation disorders and oxidative stress, reduction of obesity related disorders and heart disease risk, and protection against various types of cancer. This review provides an overview of their nutritional and non-nutritional bioactive compounds and which factors affect their content in strawberries. In addition, the bioavailability and metabolism of major strawberry phytochemicals as well as their actions in combating many pathologies, including cancer, metabolic syndrome, cardiovascular disease, obesity, diabetes, neurodegeneration, along with microbial pathogenesis have been reviewed, with a particular attention to human studies.
Biofactors | 2013
Laura Vera-Ramirez; Patricia Perez-Lopez; Alfonso Varela-López; MCarmen Ramirez-Tortosa; Maurizio Battino; José L. Quiles
Liver diseases pose a major medical problem worldwide and a wide variety of herbs have been studied for the management of liver‐related diseases. In this respect, curcumin has long been used in traditional medicine, and in recent years it has been the object of increasing research interest. In combating liver diseases, it seems clear that curcumin exerts a hypolipidic effect, which prevents the fatty acid accumulation in the hepatocytes that may result from metabolic imbalances, and which may cause nonalcoholic steatohepatitis. Another crucial protective activity of curcumin, not only in the context of chronic liver diseases but also regarding carcinogenesis and other age‐related processes, is its potent antioxidant activity, which affects multiple processes and signaling pathways. The effects of curcumin on NF‐κβ are crucial to our understanding of the potent hepatoprotective role of this herb‐derived micronutrient. Because curcumin is a micronutrient that is closely related to cellular redox balance, its properties and activity give rise to a series of molecular reactions that in every case and biological situation affect the mitochondria.
Molecules | 2016
Sadia Afrin; Francesca Giampieri; Massimiliano Gasparrini; Tamara Y. Forbes-Hernandez; Alfonso Varela-López; José L. Quiles; Bruno Mezzetti; Maurizio Battino
Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.
PLOS ONE | 2013
Pedro Bullón; Maurizio Battino; Alfonso Varela-López; Patricia Perez-Lopez; Sergio Granados-Principal; Maria del Carmen Ramirez-Tortosa; Julio J. Ochoa; Mario D. Cordero; Adrian Gonzalez-Alonso; Cesar L. Ramirez-Tortosa; Corrado Rubini; Antonio Zizzi; José L. Quiles
Background/Objectives Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. Methods/Findings Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. Conclusions The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.
Annals of the New York Academy of Sciences | 2017
Francesca Giampieri; Tamara Y. Forbes-Hernandez; Massimiliano Gasparrini; Sadia Afrin; Danila Cianciosi; Patricia Reboredo-Rodríguez; Alfonso Varela-López; José L. Quiles; Bruno Mezzetti; Maurizio Battino
It is generally accepted that a fruit and vegetable–enriched diet is favorable for human health. The consumption of strawberries, in particular, has been related to the maintenance of well‐being and the prevention of several chronic diseases, owing to the high contents of antioxidants and phytochemicals present in the fruit. Several biological effects have been explained through the total antioxidant capacity exerted by these bioactive compounds, but recently more intricate mechanisms have begun to be examined. In this context, it has been reported that strawberry phenolics are able to exert anti‐inflammatory, anticarcinogenic, antiproliferative, and antiatherosclerotic activities, acting on specific molecular pathways related to antioxidant defenses, metabolism, survival, and proliferation. The overall aim of this work is to discuss and update the cellular and molecular mechanisms recently proposed to clarify the effects of strawberry phenolics on human health, with particular attention to the most common chronic diseases, such as metabolic syndrome, cardiovascular disease, and cancer.
Antioxidants | 2015
Alfonso Varela-López; Pedro Bullón; Francesca Giampieri; José L. Quiles
One of the main factors able to explain the pathophysiological mechanism of inflammatory conditions that occur in periodontal disease is oxidative stress. Given the emerging understanding of this relationship, host-modulatory therapies using antioxidants could be interesting to prevent or slow the breakdown of soft and hard periodontal tissues. In this context, non-nutrient phenolic compounds of various foods and plants have received considerable attention in the last decade. Here, studies focusing on the relationship between different compounds of this type with periodontal disease have been collected. Among them, thymoquinone, coenzyme Q (CoQ), mangiferin, resveratrol, verbascoside and some flavonoids have shown to prevent or ameliorate periodontal tissues damage in animal models. However evidence regarding this effect in humans is poor and only limited to topical treatments with CoQ and catechins. Along with animal experiments, in vitro studies indicate that possible mechanisms by which these compounds might exert their protective effects include antioxidative properties, oxygen and nitrogen scavenging abilities, and also inhibitory effects on cell signaling cascades related to inflammatory processes which have an effect on RNS or ROS production as well as on antioxidant defense systems.
Molecules | 2016
Alfonso Varela-López; Francesca Giampieri; Maurizio Battino; José L. Quiles
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Molecules | 2016
Lucía Fernández del Río; Elena Gutiérrez-Casado; Alfonso Varela-López; José M. Villalba
Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the “hallmarks of aging”, which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process. Attenuation of aging-related alterations by olive oil or its minor compounds has been observed in cellular, animal and human models. How olive oil targets the hallmarks of aging could explain the improvement of health, reduced risk of aging-associated diseases, and increased longevity which have been associated with consumption of a typical Mediterranean diet containing this edible oil as the predominant fat source.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016
Alfonso Varela-López; Pedro Bullón; Maurizio Battino; MCarmen Ramirez-Tortosa; Julio J. Ochoa; Mario D. Cordero; Cesar L. Ramirez-Tortosa; Corrado Rubini; Antonio Zizzi; José L. Quiles
An age-dependent model of the periodontium was reproduced to evaluate the effect of life-long feeding on a low coenzyme Q10 dosage in n-6, n-3 polyunsaturated fatty acid or monounsaturated fatty acid-based diets on periodontal tissues of young and old rats. Results shown that exacerbated age-related alveolar bone loss previously associated to n-6 polyunsaturated fatty acid diet was attenuated by coenzyme Q10 Gene expression analysis suggests that involved mechanisms might be related to a restored capacity of mitochondria to adapt to aging in gingival cells from rats fed on n-6 polyunsaturated fatty acid. In particular, this could be due to an age-related increase of the rate of mitochondrial biogenesis and a better oxidative and respiratory balance in these animals. From the nutritional and clinical point of view, it is noteworthy that supplementation with coenzyme Q10 could counteract the negative effects of n-6 polyunsaturated fatty acid on alveolar bone loss (a major feature of periodontitis) associated to age.
Food and Chemical Toxicology | 2018
Massimiliano Gasparrini; Francesca Giampieri; Tamara Y. Forbes-Hernandez; Sadia Afrin; Danila Cianciosi; Patricia Reboredo-Rodríguez; Alfonso Varela-López; Jiaojiao Zhang; José L. Quiles; Bruno Mezzetti; Stefano Bompadre; Maurizio Battino
A protracted pro-inflammatory state is the common denominator in the development, progression and complication of the common chronic diseases. Dietary antioxidants represent an efficient tool to counteract this inflammatory state. The aim of the present work was to evaluate the effects of strawberry extracts on inflammation evoked by E. Coli lipopolysaccharide in Human Dermal Fibroblast, by measuring reactive oxygen species production, apoptosis rate, antioxidant enzymes activity, mitochondria functionality and also investigating the molecular pathway involved in inflammatory and antioxidant response. The results demonstrated that strawberry pre-treatment reduced intracellular reactive oxygen species levels, apoptotic rate, improved antioxidant defences and mitochondria functionality in lipopolysaccharide -treated cells. Strawberry exerted these protective activities through the inhibition of the NF-kB signalling pathway and the stimulation of the Nrf2 pathway, with a mechanism AMPK-dependent. These results confirm the health benefits of strawberry in the prevention of inflammation and oxidative stress condition in lipopolysaccharide-treated cells.