Alfred Gugerell
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alfred Gugerell.
Cancer | 2013
Dietmar Pils; Peter Horak; Petr Vanhara; Mariam Anees; Michaela Petz; Angela Alfanz; Alfred Gugerell; Michael Wittinger; Andreas Gleiss; Veronika Auner; Dan Tong; Robert Zeillinger; Elena-Ioana Braicu; Jalid Sehouli; Michael Krainer
Current prognostic information in ovarian cancer is based on tumor stage, tumor grade, and postoperative tumor size. Reliable molecular prognostic markers are scarce. In this article, the authors describe epigenetic events in a frequently deleted region on chromosome 8p22 that influence the expression of tumor suppressor candidate 3 (TUSC3), a putative tumor suppressor gene in ovarian cancer.
Gynecologic Oncology | 2010
Dietmar Pils; Michael Wittinger; Michaela Petz; Alfred Gugerell; Wolfgang Gregor; Angela Alfanz; Reinhard Horvat; Elena-Ioana Braicu; Jalid Sehouli; Robert Zeillinger; Wolfgang Mikulits; Michael Krainer
OBJECTIVE Transforming growth factor beta (TGF-beta) signaling via Smads plays a central role in carcinogenesis. Bmp and activin membrane-bound inhibitor (BAMBI) was initially described as a pseudoreceptor antagonizing TGF-beta receptor activation, thus impairing signaling. Here we wanted to estimate the role of BAMBI in ovarian cancer. METHODS The function of BAMBI was studied using a cell line model and intracellular localization experiments. The impact of BAMBI expression on patient outcome was estimated by real-time PCR and immunohistochemistry. RESULTS We demonstrate for the first time a nuclear co-translocation of BAMBI with Smad2/3 upon TGF-beta treatment. Moreover, overexpression of BAMBI in an in vitro model led to significantly increased proliferation (doubling time -37.0%, P=0.010), migration (+581.2%, P=0.004) and resistance to TGF-beta-mediated apoptosis (decrease of apoptosis from 30% in the control cells to 7% in the BAMBI-overexpressing cells). Although-prima facie-this fits to the thesis of BAMBI as a pseudoreceptor, it may also be explained by modulation of TGF-beta signaling in the nucleus, leading to the observed pro-oncogenic properties. The tumor promoting impact of BAMBI mRNA overexpression in vitro could not be confirmed in primary tumor samples, and while nearly all tumor samples showed up-regulation of BAMBI (37.3% 1+, 39.2% 2+, and 16.7% 3+, respectively) compared to undetectable BAMBI in healthy pre- and post-menopausal ovarian epithelia, no impact of BAMBI expression on recurrence free and overall survival could be observed. CONCLUSION These findings provide new insights into the Smad-mediated pathway by inferring that BAMBI is a novel modulator of TGF-beta signaling.
PLOS ONE | 2014
Alfred Gugerell; Johanna Kober; Thorsten Laube; Torsten Walter; Sylvia Nürnberger; Elke Grönniger; Ralf Wyrwa; Matthias Schnabelrauch; Maike Keck
An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea) (PEUU) and poly[(L-lactide-co-ε-caprolactone)-co-(L-lysine ethyl ester diisocyanate)-block-oligo(ethylene glycol)-urethane] (PEU), containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs) were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.
Journal of Biomedical Materials Research Part A | 2012
Alfred Gugerell; Klaudia Schossleitner; Susanne Wolbank; Sylvia Nürnberger; Heinz Redl; Heinz Gulle; Andreas Goppelt; Michaela Bittner; Waltraud Pasteiner
Over the last century many studies have been performed to assess the impact of fibrin sealant (FS) components on cells. Because of the noncovalent bonding of thrombin to fibrin during fibrin clot formation, we wanted to further evaluate the impact of fibrin bound thrombin on cell viability. Initially, we quantified the activity of thrombin in three different, commercially available FS. This information was used to prepare fibrin clots covering a range of thrombin concentrations from 4 to 820 IU mL(-1), but which were identical with respect to all other constituents. Although these fibrin clots did not differ in their three-dimensional structure, clots prepared with highly concentrated thrombin (820 IU mL(-1)) failed to support adhesion and spreading of primary human keratinocytes (NHEK). The number of attached cells was also significantly reduced on high thrombin activity clots. We hypothesized that these observations are not only the consequence of decreased proliferation but of apoptotic mechanisms, since the expression of cleaved caspase 3 and 7 was strongly enhanced on fibrin clots with high thrombin activity. This was accompanied by an induction of expression of Trail-R2 which is a receptor known to mediate apoptosis signals. Blocking of thrombin activity by hirudin led to an improvement of cell morphology and to an increase in number of attached cells. In addition, the induction of caspase 3 and 7 was also reduced. Thus, here we report for the first time that fibrin bound thrombin does not only decrease proliferation (as already published by others), it also does induce NHEK apoptosis when present at high concentrations.
Burns | 2015
Alfred Gugerell; Anne Neumann; Johanna Kober; Loredana Tammaro; Eva Hoch; Matthias Schnabelrauch; Lars Peter Kamolz; Cornelia Kasper; Maike Keck
INTRODUCTION Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. METHODS ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. RESULTS ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. DISCUSSION ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration.
Journal of Biomaterials Applications | 2011
Diana Macasev; James P. DiOrio; Alfred Gugerell; Andreas Goppelt; Heinz Gulle; Michaela Bittner
Fibrin sealants can be used to support tissue regeneration or as vehicles for delivery of cells in tissue engineering. Differences in the composition of fibrin sealants, however, could determine the success of such applications. The results presented in this article show clear differences between Fibrin sealant A (FS A) clots and Fibrin sealant B (FS B) clots with respect to their compatibility with primary human cells involved in soft tissue repair. FS A clots, which are characterized by a physiological coarse fibrin structure, promoted attachment, spreading, and proliferation of keratinocytes, fibroblasts, and endothelial cells. In contrast, FS B clots displaying a fine to medium clot structure failed to support spreading of all three cell types. Adhesion of keratinocytes was decreased on FS B clots compared to FS A clots after 3 h incubation, whereas number of attached fibroblasts and endothelial cells was initially comparable between the two fibrin sealants. However, all three cell types proliferated on FS A clots but no sustained proliferation was detected on FS B clots. We further demonstrate that the observed differences between FS A and B clots are partly based upon 1 M sodium chloride extractable constituents, like thrombin, and partly on nonextractable constituents or the fibrin structure. In conclusion, our in vitro results demonstrate that FS A clots serve as a provisional matrix that encourages adhesion and growth of keratinocytes, fibroblasts, and endothelial cells. Therefore, FS A seems to be well suited for applications in tissue engineering.
BioMed Research International | 2015
Johanna Kober; Alfred Gugerell; Melanie Schmid; Lars-Peter Kamolz; Maike Keck
A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. However, the main focus in research and clinical application lies on dermal and epidermal substitutes whereas the development of a subcutaneous replacement (hypodermis) is often disregarded. In this study we used fibrin sealant as hydrogel scaffold to generate a three-layered skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes were embedded in the fibrin hydrogel and were combined with another fibrin clot with fibroblasts for the construction of the dermal layer. Keratinocytes were added on top of the two-layered construct to form the epidermal layer. The three-layered construct was cultivated for up to 3 weeks. Our results show that ASCs and fibroblasts were viable, proliferated normally, and showed physiological morphology in the skin substitute. ASCs were able to differentiate into mature adipocytes during the course of four weeks and showed morphological resemblance to native adipose tissue. On the surface keratinocytes formed an epithelial-like layer. For the first time we were able to generate a three-layered skin substitute based on a fibrin hydrogel not only serving as a dermal and epidermal substitute but also including the hypodermis.
Wound Repair and Regeneration | 2014
Alfred Gugerell; Waltraud Pasteiner; Sylvia Nürnberger; Johanna Kober; Alexandra Meinl; Sabine Pfeifer; Joachim Hartinger; Susanne Wolbank; Andreas Goppelt; Heinz Redl; Rainer Mittermayr
Fibrin biomatrices have been used for many years for hemostasis and sealing and are a well‐established surgical tool. The objective of the present study was to compare two commercially available fibrin biomatrices regarding the effect of their thrombin concentration on keratinocytes and wound healing in vitro and in vivo. Keratinocytes showed significant differences in adhesion, viability, and morphology in the presence of the fibrin matrices in vitro. A high thrombin concentration (800–1,200 IU/mL) caused deteriorated cell compatibility. By using a thrombin inhibitor, those differences could be reversed. In a rat excisional wound healing model, we observed more rapid wound closure and less wound severity in wounds treated with a fibrin matrix containing a lower concentration of thrombin (4 IU/mL). Furthermore, fewer new functional vessels and a lower level of vascular endothelial growth factor were measured in wounds after 7 days treated with the matrix with higher thrombin concentration. These in vivo results may be partially explained by the in vitro biocompatibility data. Additionally, results show that low thrombin biomatrices were degraded faster than the high thrombin material. Hence, we conclude that the composition of fibrin biomatrices influences keratinocytes and therefore has an impact on wound healing.
Current Cardiovascular Imaging Reports | 2016
Ljubica Mandic; Denise Traxler; Alfred Gugerell; Katrin Zlabinger; Dominika Lukovic; Noemi Pavo; Georg Goliasch; A Spannbauer; Johannes Winkler; Mariann Gyöngyösi
Purpose of ReviewMyocardial infarction (MI) leading to heart failure displays an important cause of death worldwide. Adequate restoration of blood flow to prevent this transition is a crucial factor to improve long-term morbidity and mortality. Novel regenerative therapies have been thoroughly investigated within the past decades.Recent FindingsIncreased angiogenesis in infarcted myocardium has shown beneficial effects on the prognosis of MI; therefore, the proangiogenic capacity of currently tested treatments is of specific interest. Molecular imaging to visualize formation of new blood vessels in vivo displays a promising option to monitor proangiogenic effects of regenerative substances.SummaryBased on encouraging results in preclinical models, molecular angiogenesis imaging has recently been applied in a small set of patients. This article reviews recent literature on noninvasive in vivo molecular imaging of angiogenesis after MI as an integral part of cardiac regeneration.
Archive | 2010
Sylvia Nürnberger; Susanne Wolbank; Anja Peterbauer-Scherb; Tatjana Morton; Georg Feichtinger; Alfred Gugerell; Alexandra Meinl; Krystyna Labuda; Michaela Bittner; Waltraud Pasteiner; Lila Nikkola; Christian Gabriel; Martijn van Griensven; Heinz Redl
Clot formation is an essential mechanism for wound closure and its principle is ubiquitous in the animal kingdom, comprising invertebrates such as arthropods, echinoderms, and cephalopods as well as all classes of vertebrates (Alsberg and Clark, 1908; Xu and Doolittle, 1990; Feral, 2010). The general principle of coagulation is the conversion of proteins to fibrous material by enzyme reaction in the presence of blood cells. Although the reacting partners (proteins, enzymes, and cell types) strongly differ between the animal groups, the final product always consists mainly or partly of fibrous material. Its functionality seems to rely on the formation of a gauze-like cover sealing the lesion.