Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfred R. Holzwarth is active.

Publication


Featured researches published by Alfred R. Holzwarth.


Biochimica et Biophysica Acta | 2012

The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II.

Peter Jahns; Alfred R. Holzwarth

Photoprotection of photosystem II (PSII) is essential to avoid the light-induced damage of the photosynthetic apparatus due to the formation of reactive oxygen species (=photo-oxidative stress) under excess light. Carotenoids are known to play a crucial role in these processes based on their property to deactivate triplet chlorophyll (³Chl*) and singlet oxygen (¹O₂*). Xanthophylls are further assumed to be involved either directly or indirectly in the non-photochemical quenching (NPQ) of excess light energy in the antenna of PSII. This review gives an overview on recent progress in the understanding of the photoprotective role of the xanthophylls zeaxanthin (which is formed in the light in the so-called xanthophyll cycle) and lutein with emphasis on the NPQ processes associated with PSII of higher plants. The current knowledge supports the view that the photoprotective role of Lut is predominantly restricted to its function in the deactivation of ³Chl*, while zeaxanthin is the major player in the deactivation of excited singlet Chl (¹Chl*) and thus in NPQ (non-photochemical quenching). Additionally, zeaxanthin serves important functions as an antioxidant in the lipid phase of the membrane and is likely to act as a key component in the memory of the chloroplast with respect to preceding photo-oxidative stress. This article is part of a Special Issue entitled: Photosystem II.


Biophysical Journal | 1988

Kinetic and energetic model for the primary processes in photosystem II

Günther H. Schatz; Helmut Brock; Alfred R. Holzwarth

A detailed model for the kinetics and energetics of the exciton trapping, charge separation, charge recombination, and charge stabilization processes in photosystem (PS) II is presented. The rate constants describing these processes in open and closed reaction centers (RC) are calculated on the basis of picosecond data (Schatz, G. H., H. Brock, and A. R. Holzwarth. 1987. Proc. Natl. Acad. Sci. USA. 84:8414-8418) obtained for oxygen-evolving PS II particles from Synechococcus sp. with approximately 80 chlorophylls/P(680). The analysis gives the following results. (a) The PS II reaction center donor chlorophyll P(680) constitutes a shallow trap, and charge separation is overall trap limited. (b) The rate constant of charge separation drops by a factor of approximately 6 when going from open (Q-oxidized) to closed (Q-reduced) reaction centers. Thus the redox state of Q controls the yield of radical pair formation and the exciton lifetime in the Chl antenna. (c) The intrinsic rate constant of charge separation in open PS II reaction centers is calculated to be approximately 2.7 ps(-1). (d) In particles with open RC the charge separation step is exergonic with a decrease in standard free energy of approximately 38 meV. (e) In particles with closed RC the radical pair formation is endergonic by approximately 12 meV. We conclude on the basis of these results that the long-lived (nanoseconds) fluorescence generally observed with closed PS II reaction centers is prompt fluorescence and that the amount of primary radical pair formation is decreased significantly upon closing of the RC.


Photochemistry and Photobiology | 1996

Synthetic Zinc and Magnesium Chlorin Aggregates as Models for Supramolecular Antenna Complexes in Chlorosomes of Green Photosynthetic Bacteria

Hitoshi Tamiaki; Masaaki Amakawa; Yoshiyuki Shimono; Rikuhei Tanikaga; Alfred R. Holzwarth; Kurt Schaffner

Abstract— A comparison of the spectra of in vitro (3‐hydroxymethyl‐131‐oxometallochlorin) and in vivo chlorosomal (bacterio‐chlorophyll‐c) aggregates suggests a similar supramolecular structure for the artificial oligomers and the bacte‐riochlorophyll‐c aggregates in the extramembranous antenna complexes (chlorosomes) of green photosynthetic bacteria. Synthetic zinc and magnesium chlorins have been found to aggregate in 1 % (vol/vol) tetrahydrofuran and hexane solutions and in thin films to form oligomers with the Qy absorption bands shifted to longer wavelengths by about 1900 (Zn chlorins) and 2100 cm−1 (Mg) relative to the corresponding monomer bands. Visible absorption and circular dichroism spectra of various zinc chlorins establish that a central metal, a 31‐hydroxy and a 131‐keto group are functional prerequisites for the aggregation. Vibrational bands measured by IR spectroscopy of solid films reveal two characteristic structural features of the oligomers: (1) a five‐coordinated metallochlorin macrocycle with an axial ligand (bands at 1500‐1630 cm−1), and (2) a hydrogen bond between the keto oxygen of one chlorin and the hydroxy group of a second chlorin, the oxygen of which is chelated to the metal atom of a third molecule, i.e. C=O…H‐O…M (=Zn or Mg).


Proceedings of the National Academy of Sciences of the United States of America | 2009

Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes

Swapna Ganapathy; Gert T. Oostergetel; Piotr Wawrzyniak; Michael Reus; Aline Gomez Maqueo Chew; Francesco Buda; Egbert J. Boekema; Donald A. Bryant; Alfred R. Holzwarth; Huub J. M. de Groot

Chlorosomes are the largest and most efficient light-harvesting antennae found in nature, and they are constructed from hundreds of thousands of self-assembled bacteriochlorophyll (BChl) c, d, or e pigments. Because they form very large and compositionally heterogeneous organelles, they had been the only photosynthetic antenna system for which no detailed structural information was available. In our approach, the structure of a member of the chlorosome class was determined and compared with the wild type (WT) to resolve how the biological light-harvesting function of the chlorosome is established. By constructing a triple mutant, the heterogeneous BChl c pigment composition of chlorosomes of the green sulfur bacteria Chlorobaculum tepidum was simplified to nearly homogeneous BChl d. Computational integration of two different bioimaging techniques, solid-state NMR and cryoEM, revealed an undescribed syn-anti stacking mode and showed how ligated BChl c and d self-assemble into coaxial cylinders to form tubular-shaped elements. A close packing of BChls via π–π stacking and helical H-bonding networks present in both the mutant and in the WT forms the basis for ultrafast, long-distance transmission of excitation energy. The structural framework is robust and can accommodate extensive chemical heterogeneity in the BChl side chains for adaptive optimization of the light-harvesting functionality in low-light environments. In addition, syn-anti BChl stacks form sheets that allow for strong exciton overlap in two dimensions enabling triplet exciton formation for efficient photoprotection.


Biochimica et Biophysica Acta | 2010

Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis

Manuela Nilkens; Eugen Kress; Petar H. Lambrev; Yuliya Miloslavina; Marc Muller; Alfred R. Holzwarth; Peter Jahns

The induction and relaxation of non-photochemical quenching (NPQ) under steady-state conditions, i.e. during up to 90min of illumination at saturating light intensities, was studied in Arabidopsis thaliana. Besides the well-characterized fast qE and the very slow qI component of NPQ, the analysis of the NPQ dynamics identified a zeaxanthin (Zx) dependent component which we term qZ. The formation (rise time 10-15min) and relaxation (lifetime 10-15min) of qZ correlated with the synthesis and epoxidation of Zx, respectively. Comparative analysis of different NPQ mutants from Arabidopsis showed that qZ was clearly not related to qE, qT or qI and thus represents a separate, Zx-dependent NPQ component.


FEBS Letters | 2008

Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching

Yuliya Miloslavina; Antje Wehner; Petar H. Lambrev; Emilie Wientjes; Michael Reus; Győző Garab; Roberta Croce; Alfred R. Holzwarth

Time‐resolved fluorescence on oligomers of the main light‐harvesting complex from higher plants indicate that in vitro oligomerization leads to the formation of a weakly coupled inter‐trimer chlorophyll–chlorophyll (Chl) exciton state which converts in tens of ps into a state which is spectrally broad and has a strongly far‐red enhanced fluorescence spectrum. Both its lifetime and spectrum show striking similarity with a 400 ps fluorescence component appearing in intact leaves of Arabidopsis when non‐photochemical quenching (NPQ) is induced. The fluorescence components with high far‐red/red ratio are thus a characteristic marker for NPQ conditions in vivo. The far‐red emitting state is shown to be an emissive Chl–Chl charge transfer state which plays a crucial part in the quenching.


Photosynthesis Research | 1994

On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study

Alfred R. Holzwarth; Kurt Schaffner

The supramolecular structure of methyl (31R)-BChlided aggregation has been explored by molecular modelling in order to elucidate the unusual structure of the BChl rods in the chlorosomal antennae of green bacteria. The aggregate construction progressed from a BChlide monomer in 5c coordination which was stepwise combined to form trimeric, pentameric and decameric chlorin stacks, all incorporating Mg····O-H as a basic interaction element which links two chlorins between the 31-hydroxyl oxygen and the Mg. Up to the level of the trimer, the structures were optimized by both a semiempirical quantum chemical method (PM3) and a force field method, while larger structures were only modelled by the force field (MM+). Strong interactions were found by extended stacking of chlorins which are in van der Waals contact. Extended hydrogen bonding networks upon stack pairing brought about by OH····O=C bonds (bond length ca. 2.2Å, angle 139–153°) between appropriately situated chlorin pairs and by electrostatic interactions lead to very large energy stabilizations. The structural features of a modelled 40mer BChl aggregate are in full accord with all spectroscopic and low-resolution structural information on the in-vitro and chlorosomal BChl aggregates. Most important, from the rotation angle between stacks of ca. 16° and the stack-to-stack distance of 7.6 Å a tubular structure can be extrapolated to form on further extension of the aggregate. It has a predicted diameter of about 5.4 nm (Mg-Mg distance), i.e. very similar to that found for the rod elements in the chlorosomes ofChloroflexus.


Biophysical Journal | 2001

Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements.

Roberta Croce; Marc Muller; Roberto Bassi; Alfred R. Holzwarth

The energy transfer kinetics from carotenoids to chlorophylls and among chlorophylls has been measured by femtosecond transient absorption kinetics in a monomeric unit of the major light-harvesting complex (LHCII) from higher plants. The samples were reconstituted complexes with different carotenoid contents. The kinetics was measured both in the carotenoid absorption region and in the chlorophyll Q(y) region using two different excitation wavelengths suitable for selective excitation of the carotenoids. Analysis of the data shows that the overwhelming part of the energy transfer from the carotenoids occurs directly from the initially excited S(2) state of the carotenoids. Only a small part (<20%) may possibly take an S(1) pathway. All the S(2) energy transfer from carotenoids to chlorophylls occurs with time constants <100 fs. We have been able to differentiate among the three carotenoids, two luteins and neoxanthin, which have transfer times of approximately 50 and 75 fs for the two luteins, and approximately 90 fs for neoxanthin. About 50% of the energy absorbed by carotenoids is initially transferred directly to chlorophyll b (Chl b), while the rest is transferred to Chl a. Neoxanthin almost exclusively transfers to Chl b. Due to various complex effects discussed in the paper, such as a specific coupling of Chl b and Chl a excited states, the percentage of direct Chl b transfer thus is somewhat lower than estimated by us previously for LHCII from Arabidopsis thaliana. (Connelly, J. P., M. G. Müller, R. Bassi, R. Croce, and A. R. Holzwarth. 1997. Biochemistry. 36:281). We can distinguish three different Chls b receiving energy directly from carotenoids. We propose as a new mechanism that the carotenoid-to-Chl b transfer occurs to a large part via the B(x) state of Chl b and to the Q(x) state, while the transfer to Chl a occurs only via the Q(x) state. We find no compelling evidence in favor of a substantial S(1) transfer path of the carotenoids, although some transfer via the S(1) state of neoxanthin can not be entirely excluded. The S(1) lifetimes of the two luteins were determined to be 15 ps and 3.9 ps. A detailed quantitative analysis and kinetic model of the processes described here will be presented in a separate paper.


ChemPhysChem | 2010

Singlet Energy Dissipation in the Photosystem II Light‐Harvesting Complex Does Not Involve Energy Transfer to Carotenoids

Marc Muller; Petar H. Lambrev; Michael Reus; Emilie Wientjes; Roberta Croce; Alfred R. Holzwarth

The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of singlet-singlet annihilation are discussed. Under conditions where annihilation is absent, the two types of LHC II oligomers show distributive biexponential (bimodal) kinetics with lifetimes of approximately 5-20 ps and approximately 200-400 ps having transient spectra typical for chlorophyll excited states. The data can be described kinetically by a two-state compartment model involving only chlorophyll excited states. Evidence is provided that neither carotenoid excited nor carotenoid radical states are involved in the quenching mechanism at variance with earlier proposals. We propose instead that a chlorophyll-chlorophyll charge-transfer state is formed in LHC II oligomers which is an intermediate in the quenching process. The relevance to non-photochemical quenching in vivo is discussed.


Biophysical Journal | 2003

Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 1. A New Interpretation of the Energy Trapping and Early Electron Transfer Steps in Photosystem I

Marc Muller; Jens Niklas; Wolfgang Lubitz; Alfred R. Holzwarth

The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.

Collaboration


Dive into the Alfred R. Holzwarth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Jahns

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Yuliya Miloslavina

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge