Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfred Wittinghofer is active.

Publication


Featured researches published by Alfred Wittinghofer.


Trends in Biochemical Sciences | 1990

The P-loop — a common motif in ATP- and GTP-binding proteins

Matti Saraste; Peter R. Sibbald; Alfred Wittinghofer

Many ATP- and GTP-binding proteins have a phosphate-binding loop (P-loop), the primary structure of which typically consists of a glycine-rich sequence followed by a conserved lysine and a serine or threonine. The three-dimensional structures of several ATP- and GTP-binding proteins containing P-loops have now been solved. In this review current knowledge of P-loops is discussed with the additional aim of illustrating the fascinating relationship between protein sequence, structure and function.


Nature | 1998

Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP

J. de Rooij; Fried J. T. Zwartkruis; M. H.G. Verheijen; Robbert H. Cool; Sebastian M.B. Nijman; Alfred Wittinghofer; Johannes L. Bos

Rap1 is a small, Ras-like GTPase that was first identified as a protein that could suppress the oncogenic transformation of cells by Ras. Rap1 is activated by several extracellular stimuli and may be involved in cellular processes such as cell proliferation, cell differentiation, T-cell anergy and platelet activation. At least three different second messengers, namely diacylglycerol, calcium and cyclic AMP are able to activate Rap1 by promoting its release of the guanine nucleotide GDP and its binding to GTP. Here we report that activation of Rap1 by forskolin and cAMP occurs independently of protein kinase A (also known as cAMP-activated protein kinase). We have cloned the gene encoding a guanine-nucleotide-exchange factor (GEF) which we have named Epac (exchange protein directly activated by cAMP). This protein contains a cAMP-binding site and a domain that is homologous to domains of known GEFs for Ras and Rap1. Epac binds cAMP in vitro and exhibits in vivo and in vitro GEF activity towards Rap1. cAMP strongly induces the GEF activity of Epac towards Rap1 both in vivo and in vitro. We conclude that Epac is a GEF for Rap1 that is regulated directly by cAMP and that Epac is a new target protein for cAMP.


Cell | 2007

GEFs and GAPs: Critical Elements in the Control of Small G Proteins

Johannes L. Bos; Holger Rehmann; Alfred Wittinghofer

Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate the activity of small guanine nucleotide-binding (G) proteins to control cellular functions. In general, GEFs turn on signaling by catalyzing the exchange from G-protein-bound GDP to GTP, whereas GAPs terminate signaling by inducing GTP hydrolysis. GEFs and GAPs are multidomain proteins that are regulated by extracellular signals and localized cues that control cellular events in time and space. Recent evidence suggests that these proteins may be potential therapeutic targets for developing drugs to treat various diseases, including cancer.


The EMBO Journal | 1990

Refined crystal structure of the triphosphate conformation of H−ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis

Emil F. Pai; Ute Krengel; Gregory A. Petsko; Roger S. Goody; Wolfgang Kabsch; Alfred Wittinghofer

The crystal structure of the H‐ras oncogene protein p21 complexed to the slowly hydrolysing GTP analogue GppNp has been determined at 1.35 A resolution. 211 water molecules have been built into the electron density. The structure has been refined to a final R‐factor of 19.8% for all data between 6 A and 1.35 A. The binding sites of the nucleotide and the magnesium ion are revealed in high detail. For the stretch of amino acid residues 61‐65, the temperature factors of backbone atoms are four times the average value of 16.1 A2 due to the multiple conformations. In one of these conformations, the side chain of Gln61 makes contact with a water molecule, which is perfectly placed to be the nucleophile attacking the gamma‐phosphate of GTP. Based on this observation, we propose a mechanism for GTP hydrolysis involving mainly Gln61 and Glu63 as activating species for in‐line attack of water. Nucleophilic displacement is facilitated by hydrogen bonds from residues Thr35, Gly60 and Lys16. A mechanism for rate enhancement by GAP is also proposed.


Trends in Biochemical Sciences | 1998

GTPase-activating proteins: helping hands to complement an active site

Klaus Scheffzek; Mohammad Reza Ahmadian; Alfred Wittinghofer

Stimulation of the intrinsic GTPase activity of GTP-binding proteins by GTPase-activating proteins (GAPs) is a basic principle of GTP-binding-protein downregulation. Recently, the molecular mechanism behind this reaction has been elucidated by studies on Ras and Rho, and their respective GAPs. The basic features involve stabilizing the existing catalytic machinery and supplementing it by an external arginine residue. This represents a novel mechanism for enzyme active-site formation.


Journal of Biological Chemistry | 2000

Mechanism of Regulation of the Epac Family of cAMP-dependent RapGEFs

J. de Rooij; Holger Rehmann; M. van Triest; Robbert H. Cool; Alfred Wittinghofer; Johannes L. Bos

Epac1 (cAMP-GEFI) and Epac2 (cAMP-GEFII) are closely related guanine nucleotide exchange factors (GEFs) for the small GTPase Rap1, which are directly regulated by cAMP. Here we show that both GEFs efficiently activate Rap2 as well. A third member of the family, Repac (GFR), which lacks the cAMP dependent regulatory sequences, is a constitutive activator of both Rap1 and Rap2. In contrast to Epac1, Epac2 contains a second cAMP binding domain at the N terminus, as does the Epac homologue from Caenorhabditis elegans. Affinity measurements show that this distal cAMP binding domain (the A-site) binds cAMP with much lower affinity than the cAMP binding domain proximal to the catalytic domain (the B-site), which is present in both Epac1 and Epac2. Deletion mutant analysis shows that the high affinity cAMP binding domains are sufficient to regulate the GEFs in vitro. Interestingly, isolated fragments containing the B-sites of either Epac1 or Epac2, but not the A-site from Epac2, inhibit the catalytic domains in trans. This inhibition is relieved by the addition of cAMP. In addition to the cAMP binding domains, both Epac1 and Epac2 have a DEP domain. Deletion of this domain does not affect regulation of Epac1 activity but affects membrane localization. From these results, we conclude that all three members of the Epac family regulate both Rap1 and Rap2. Furthermore, we conclude that the catalytic activity of Epac1 is constrained by a direct interaction between GEF and high affinity cAMP binding domains in the absence of cAMP. Epac1 becomes activated by a release of this inhibition when cAMP is bound.


Cell | 1990

Three-dimensional structures of H-ras p21 mutants: Molecular basis for their inability to function as signal switch molecules

Ute Krengel; Ilme Schlichting; Anna Scherer; Renate Schumann; Matthias Frech; Jacob John; Wolfgang Kabsch; Emil F. Pai; Alfred Wittinghofer

The X-ray structures of the guanine nucleotide binding domains (amino acids 1-166) of five mutants of the H-ras oncogene product p21 were determined. The mutations described are Gly-12----Arg, Gly-12----Val, Gln-61----His, Gln-61----Leu, which are all oncogenic, and the effector region mutant Asp-38----Glu. The resolutions of the crystal structures range from 2.0 to 2.6 A. Cellular and mutant p21 proteins are almost identical, and the only significant differences are seen in loop L4 and in the vicinity of the gamma-phosphate. For the Gly-12 mutants the larger side chains interfere with GTP binding and/or hydrolysis. Gln-61 in cellular p21 adopts a conformation where it is able to catalyze GTP hydrolysis. This conformation has not been found for the mutants of Gln-61. Furthermore, Leu-61 cannot activate the nucleophilic water because of the chemical nature of its side chain. The D38E mutation preserves its ability to bind GAP.


Nature | 2013

Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling

Gunther Zimmermann; Björn Papke; Shehab Ismail; Nachiket Vartak; Anchal Chandra; Maike Hoffmann; Stephan A. Hahn; Gemma Triola; Alfred Wittinghofer; Philippe I. H. Bastiaens; Herbert Waldmann

The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS–PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.


Cell | 1999

Structural View of the Ran–Importin β Interaction at 2.3 Å Resolution

Ingrid R. Vetter; Andreas Arndt; U. Kutay; Dirk Görlich; Alfred Wittinghofer

Abstract Transport receptors of the Importin β family shuttle between the nucleus and cytoplasm and mediate transport of macromolecules through nuclear pore complexes. They interact specifically with the GTP-binding protein Ran, which in turn regulates their interaction with cargo. Here, we report the three-dimensional structure of a complex between Ran bound to the nonhydrolyzable GTP analog GppNHp and a 462-residue fragment from Importin β. The structure of Importin β shows 10 tandem repeats resembling HEAT and Armadillo motifs. They form an irregular crescent, the concave site of which forms the interface with Ran-triphosphate. The importin-binding site of Ran does not overlap with that of the Ran-binding domain of RanBP2.


Nature | 1999

Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue : implications for nuclear transport

Ingrid R. Vetter; Christine Nowak; Takeharu Nishimoto; Jürgen Kuhlmann; Alfred Wittinghofer

The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-β-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran·GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran·GppNHp resembles the canonical Ras·GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular ‘embrace’ enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran·GTP from importin-β-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein–protein interaction for a Ras-related protein.

Collaboration


Dive into the Alfred Wittinghofer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Scheffzek

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge