Alfredo Vargas
University of Sussex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alfredo Vargas.
Science | 2012
Holger Braunschweig; Rian D. Dewhurst; Kai Hammond; Jan Mies; Krzysztof Radacki; Alfredo Vargas
B-B Bond Alkynes contain carbon-carbon triple bonds and represent a diverse class of organic compounds. In principle, valence rules suggest that the boron analog of an alkyne, with a B-B triple bond, ought to be accessible by appending a two-electron donor to each B atom. Braunschweig et al. (p. 1420; see the Perspective by Frenking and Holzmann) now present the synthesis, isolation, and crystallization of a solid, triple-bonded diboryne, with N-heterocyclic carbenes as the terminal substituents, which contains the expected linear bonding geometry. A boron analog of an alkyne has been synthesized by reduction of a brominated precursor. Homoatomic triple bonds between main-group elements have been restricted to alkynes, dinitrogen, and a handful of reactive compounds featuring trans-bent heavier elements of groups 13 and 14. Previous attempts to prepare a compound with a boron-boron triple bond that is stable at ambient temperature have been unsuccessful, despite numerous computational studies predicting their viability. We found that reduction of a bis(N-heterocyclic carbene)-stabilized tetrabromodiborane with either two or four equivalents of sodium naphthalenide, a one-electron reducing agent, yields isolable diborene and diboryne compounds. Crystallographic and spectroscopic characterization confirm that the latter is a halide-free linear system containing a boron-boron triple bond.
Nature | 2015
Holger Braunschweig; Rian D. Dewhurst; Florian Hupp; Marco Nutz; Krzysztof Radacki; Christopher W. Tate; Alfredo Vargas; Qing Ye
The ability of an atom or molecular fragment to bind multiple carbon monoxide (CO) molecules to form multicarbonyl adducts is a fundamental trait of transition metals. Transition-metal carbonyl complexes are vital to industry, appear naturally in the active sites of a number of enzymes (such as hydrogenases), are promising therapeutic agents, and have even been observed in interstellar dust clouds. Despite the wealth of established transition-metal multicarbonyl complexes, no elements outside groups 4 to 12 of the periodic table have yet been shown to react directly with two or more CO units to form stable multicarbonyl adducts. Here we present the synthesis of a borylene dicarbonyl complex, the first multicarbonyl complex of a main-group element prepared using CO. The compound is additionally stable towards ambient air and moisture. The synthetic strategy used—liberation of a borylene ligand from a transition metal using donor ligands—is broadly applicable, leading to a number of unprecedented monovalent boron species with different Lewis basic groups. The similarity of these compounds to conventional transition-metal carbonyl complexes is demonstrated by photolytic liberation of CO and subsequent intramolecular carbon–carbon bond activation.
Angewandte Chemie | 2012
Philipp Bissinger; Holger Braunschweig; Alexander Damme; Thomas Kupfer; Alfredo Vargas
(B)olefin complexes: Reductive coupling of designed monoborane precursors (see scheme; Dur=2,3,5,6-tetramethylphenyl) gives convenient access to N-heterocyclic carbene stabilized diborenes. The presence of B-B multiple bonds in the dark red diborenes is shown experimentally and theoretically. Reaction with AgCl afforded a Ag(I) species with an unprecedented, olefin-like η(2) coordination mode.
Nature Chemistry | 2013
Holger Braunschweig; Alexander Damme; Rian D. Dewhurst; Alfredo Vargas
Transition-metal catalysis is founded on the principle that electron donation from a metal to a ligand is accepted by an antibonding orbital of the ligand, thereby weakening one of the bonds in the ligand. Without this, the initial step of bond activation in many catalytic processes would simply not occur. This concept is enshrined in the well-accepted Dewar-Chatt-Duncanson model of transition-metal bonding. We present herein experimental and computational evidence for the first true violation of the Dewar-Chatt-Duncanson bonding model, found in a π-diborene complex in which an electron-rich group 10 metal donates electrons into an empty bonding π orbital on the ligand, and thereby strengthens the bond. The complex is also the first transition-metal complex to contain a bound diborene, a species not isolated before, either in its free form or bound to a metal.
Angewandte Chemie | 2014
Julian Böhnke; Holger Braunschweig; William C. Ewing; Christian Hörl; Thomas Kramer; Ivo Krummenacher; Jan Mies; Alfredo Vargas
The complexation of two equivalents of a cyclic (alkyl)(amino)carbene (CAAC) to tetrabromodiborane, followed by reduction with four equivalents of sodium naphthalide, led to the formation of the CAAC-stabilized linear diboracumulene (CAAC)2B2. The capacity of the CAAC ligand to facilitate B2 →CAAC donation of π-electron density resulted in important differences between this species and a previously reported complex featuring a B≡B triple bond stabilized by cyclic di(amino)carbenes, including a longer B-B bond and shorter B-C bonds. Frontier orbital analysis indicated sharing of valence electrons across the entire linear C-B-B-C unit in (CAAC)2B2, which is supported by natural population analysis and cyclic voltammetry.
Angewandte Chemie | 2014
Philipp Bissinger; Holger Braunschweig; Alexander Damme; Thomas Kupfer; Ivo Krummenacher; Alfredo Vargas
The realization of a phosphine-stabilized diborene, Et3P⋅(Mes)B=B(Mes)⋅PEt3 (4), by KC8 reduction of Et3P⋅B2Mes2Br2 in benzene enabled the evaluation and comparison of its electronic structure to the previously described NHC-stabilized diborene IMe⋅(Dur)B=B(Dur)⋅IMe (1). Importantly, both species feature unusual electron-rich boron centers. However, cyclic voltammetry, UV/Vis spectroscopy, and DFT calculations revealed a significant influence of the Lewis base on the reduction potential and absorption behavior of the BB double bond system. Thus, the stronger σ-donor strength and larger electronegativity of the NHC ligand results in an energetically higher-lying HOMO, making 1 a stronger neutral reductant as 4 (1: E(1/2)=-1.55 V; 4: -1.05 V), and a smaller HOMO-LUMO gap of 1 accompanied by a noticeable red-shift of its lowest-energy absorption band with respect to 4. Owing to the highly negative reduction potentials, 1 and 4 were easily oxidized to afford rare boron-centered radical cations (5 and 6).
Nature Chemistry | 2012
Holger Braunschweig; Qing Ye; Alfredo Vargas; Rian D. Dewhurst; Krzysztof Radacki; Alexander Damme
Only a handful of elements are able to be controllably homocatenated (that is, to be formed into one- or two-dimensional chains or rings of the element), because most have weak element-element bonds. Boron forms strong B-B bonds, but its favourable cluster formation makes homocatenation very difficult. Recently, the coupling of borylene (:BR) ligands on a metal was predicted computationally. We have brought this prediction to fruition experimentally, and extended it by adding two further borylene units, stepwise forming a B(4) chain bound to a metal under mild conditions. This complex is a useful model for understanding the metal-boron interactions required to promote transition of the boron atoms from borylene ligands to oligoborane networks bound side-on. The concept shows great promise for the controlled construction of one-dimensional boron chains.
Nature Chemistry | 2013
Holger Braunschweig; Theresa Dellermann; Rian D. Dewhurst; William C. Ewing; Kai Hammond; J. Oscar C. Jiménez-Halla; Thomas Kramer; Ivo Krummenacher; Jan Mies; Ashwini K. Phukan; Alfredo Vargas
Many metal-containing compounds, and some metal-free compounds, will bind carbon monoxide. However, only a handful of metal-containing compounds have been shown to induce the coupling of two or more CO molecules, potentially a method for the use of CO as a one-carbon-atom building block for the synthesis of organic molecules. In this work, CO was added to a boron-boron triple bond at room temperature and atmospheric pressure, resulting in a compound into which four equivalents of CO are incorporated: a flat, bicyclic, bis(boralactone). By the controlled addition of one CO to the diboryne compound, an intermediate in the CO coupling reaction was isolated and structurally characterized. Electrochemical measurements confirm the strongly reducing nature of the diboryne compound.
Journal of the American Chemical Society | 2015
Julian Böhnke; Holger Braunschweig; Philipp Constantinidis; Theresa Dellermann; William C. Ewing; Ingo Fischer; Kai Hammond; Florian Hupp; Jan Mies; Hans-Christian Schmitt; Alfredo Vargas
Diborynes, molecules containing homoatomic boron-boron triple bonds, have been investigated by Raman spectroscopy in order to determine the stretching frequencies of their central B≡B units as an experimental measure of homoatomic bond strengths. The observed frequencies between 1600 and 1750 cm(-1) were assigned on the basis of DFT modeling and the characteristic pattern produced by the isotopic distribution of boron. This frequency completes the series of known stretches of homoatomic triple bonds, fitting into the trend established by the long-known stretching frequencies of C≡C and N≡N triple bonds in alkynes and dinitrogen, respectively. A quantitative analysis was carried out using the concept of relaxed force constants. The results support the classification of the diboryne as a true triple bond and speak to the similarities of molecules constructed from first-row elements of the p block. Also reported are the relaxed force constants of a recently reported diborabutatriene, which again fit into the trend established by the vibrational spectroscopy of organic cumulenes. As part of these studies, a new diboryne with decreased steric bulk was synthesized, and a computational study of the rotation of the stabilizing ligands indicated alkyne-like electronic isolation of the central B2 unit.
Angewandte Chemie | 2015
Julian Böhnke; Holger Braunschweig; Theresa Dellermann; William C. Ewing; Thomas Kramer; Ivo Krummenacher; Alfredo Vargas
The reaction of the bisboracumulene (CAAC)2 B2 (CAAC=1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with excess tert-butylisocyanide resulted in complexation of the isocyanide at boron. Though this compound might be formally drawn with a lone pair on boron, these electrons are highly delocalized throughout a conjugated π-network consisting of the π-acidic CAAC and isocyanide ligands. Heating this compound to 110 °C liberated the organic periphery of both isocyanide ligands, yielding the first example of a dicyanodiborene. Cyclic voltammetry conducted on this diborene indicated the presence of reduction waves, making this compound unique among diborenes, which are otherwise highly reducing.