Ali Adnan Hayaloglu
İnönü University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Adnan Hayaloglu.
International Dairy Journal | 2002
Ali Adnan Hayaloglu; Mehmet Güven; Patrick F. Fox
Turkish White cheese is a brined (or a pickled) cheese variety with a soft or semi-hard texture and a salty, acid taste. Some aspects of this cheese are reviewed: e.g., milk supply, use of starters and enzymes, manufacturing technology, chemical composition and microflora, chemical and biochemical changes during ripening in brine. Several characteristics of Turkish White cheese are compared to other White brined cheese varieties such as Feta and Domiati. The findings of this review suggest that future research on Turkish White cheese should characterise the changes in microflora, biochemistry and texture during ripening. Previous studies tended to focus on the chemical composition of Turkish White cheese, and little attention was directed towards the detailed characterisation of nitrogen fractions, flavour compounds, rheological and microbiological properties and their effects on the quality of the end-product.
Journal of Dairy Research | 2008
Nuray Sahan; Kurban Yasar; Ali Adnan Hayaloglu; Oya Berkay Karaca; Ahmet Kaya
Changes in chemical composition, proteolysis, lipolysis, texture, melting and sensory properties of low-fat Kashar cheese made with three different fat replacers (Simplesse D-100, Avicel Plus CM 2159 or beta-glucan) were investigated throughout ripening. The low-fat cheeses made with fat replacers were compared with full- and low-fat counterparts as controls. Reduction of fat caused increases in moisture and protein contents and decreases in moisture-in-non fat substance and yield values in low-fat cheeses. The use of fat replacers in the manufacture of low-fat Kashar cheese increased water binding capacity and improved overall quality of the cheeses. Use of fat replacer in low-fat cheese making has enhanced cheese proteolysis. All samples underwent lipolysis during ripening and low-fat cheeses with fat replacers had higher level of total free fatty acid than full- or low-fat control cheeses. Texture attributes and meltability significantly increased with addition of fat replacers. Sensory scores showed that the full-fat cheese was awarded best in all stages of ripening and low-fat variant of Kashar cheeses have inferior quality. However, fat replacers except beta-glucan improved the appearance, texture and flavour attributes of low-fat cheeses. When the fat replacers are compared, the low-fat cheese with Avicel Plus CM 2159 was highly acceptable and had sensory attributes closest to full-fat Kashar cheese.
Journal of Dairy Science | 2012
A. S. Akalin; Gülfem Ünal; Nayil Dinkçi; Ali Adnan Hayaloglu
The influence of milk protein-based ingredients on the textural characteristics, sensory properties, and microstructure of probiotic yogurt during a refrigerated storage period of 28 d was studied. Milk was fortified with 2% (wt/vol) skim milk powder as control, 2% (wt/vol) sodium calcium caseinate (SCaCN), 2% (wt/vol) whey protein concentrate (WPC) or a blend of 1% (wt/vol) SCaCN and 1% (wt/vol) WPC. A commercial yogurt starter culture and Bifidobacterium lactis Bb12 as probiotic bacteria were used for the production. The fortification with SCaCN improved the firmness and adhesiveness. Higher values of viscosity were also obtained in probiotic yogurts with SCaCN during storage. However, WPC enhanced water-holding capacity more than the caseinate. Addition of SCaCN resulted in a coarse, smooth, and more compact protein network; however, WPC gave finer and bunched structures in the scanning electron microscopy micrographs. The use of SCaCN decreased texture scores in probiotic yogurt; probably due to the lower water-holding capacity and higher syneresis values in the caseinate-added yogurt sample. Therefore, the textural characteristics of probiotic yogurts improved depending on the ingredient variety.
Journal of Dairy Science | 2013
Ali Adnan Hayaloglu; C. Tolu; K. Yasar; D. Sahingil
The effect of goat breed and starter culture on volatile composition and sensory scores in goat milk cheese was studied during 90d of ripening. Milk from 2 goat breeds (Gokceada and Turkish Saanen) and different starter culture systems (no starter, mesophilic and thermophilic starters) were used in the manufacture of goat milk cheeses (called Gokceada goat cheese). Volatile composition was determined by a solid-phase microextraction-gas chromatography-mass spectrometric method. Sixty compounds including esters (13), carboxylic acids (7), aldehydes (6), ketones (8), alcohols (14), and miscellaneous compounds (12) were identified. Esters, alcohols, and carboxylic acids were the main classes of volatile components in the cheeses. Both qualitatively and quantitatively, the use of different starter cultures and goat breeds significantly influenced the volatile fraction of goat milk cheese. Decanoic, hexanoic, and octanoic (commonly named capric, caproic, and caprylic) acids were indicator compounds to distinguish the goat breeds. Principal component analysis grouped the cheeses based on the use of starter culture and goat breed. Starter-free cheeses were separately located on the plot and age-related changes were present in all samples. Sensory evaluation of 90-d-old cheeses showed that the cheeses from the Gokceada breed received higher odor, flavor, and quality scores than those from the Turkish Saanen breed, and cheeses made using mesophilic starters resulted in the most satisfactory scores for flavor and quality attributes. In conclusion, goat milk cheeses made using milk from Gokceada goats and mesophilic starter culture had the best quality in terms of volatile composition and sensory attributes.
Journal of Agricultural and Food Chemistry | 2009
Ihsan Karabulut; Gökhan Durmaz; Ali Adnan Hayaloglu
With the aim of determining the fatty acid (FA) selectivity of lipases, a mixture of oleic acid and monoacid triacylglycerols (TAGs) including tricaproin (T6), tricaprylin (T8), tricaprin (T10), trilaurin (T12), trimyristin (T14), tripalmitin (T16) and tristearin (T18) was used as the substrate in acidolysis performed in hexane. Three immobilized lipases, namely, Lipozyme TL IM from Thermomyces lanoginosus, Lipozyme RM IM from Rhizomucor miehei and Novozym 435 from Candida antarctica, were used as biocatalyst. The effects of operating variables including the mole ratio of oleic acid to monoacid TAG, temperature, enzyme dosage and reaction time on incorporation were also investigated. Significantly different incorporation rates were obtained for different TAGs used (P < 0.05). Incorporation of oleic acid into TAGs except tricaproin and tricaprylin was higher for all the TAGs with Lipozyme TL IM catalyzed reactions than those of other two enzymes tested. Incorporation of oleic acid decreased as the acyl chain length of FA in the TAG increased with Novozyme 435 catalyzed acidolysis. Compared to the other substrate mixtures, the highest incorporation was observed for oleic acid and tricaproin mixture with three lipases tested. It was shown that the FA selectivity of the lipases is strongly dependent on the acyl chain length of FA in a TAG.
International Journal of Food Properties | 2013
Ali Adnan Hayaloglu; Ihsan Karabulut
In this study, the volatile aroma profiles of a variety of economically important cheeses for the Turkish dairy sector were characterized. A total of 75 samples belonging to 11 Turkish cheese varieties, including Civil, Canak, Dil, Divle Tulum, Ezine, Hellim, Malatya, Mihalic, Orgu, Urfa, and Van Otlu, were comparatively studied for their volatile profiles. One hundred and twelve volatile compounds were identified in the cheeses by solid-phase microextraction combined with gas chromatography-mass spectrometry and the results are discussed based on their chemical classes (31 esters, 7 acids, 18 ketones, 3 aldehydes, 24 alcohols, 10 terpenes, and 19 miscellaneous compounds). Esters, ketones, and alcohols were the most abundant classes identified and were highly dependent on the variety of cheese. Principal component analysis was applied to aid the interpretation of the gas chromatography-mass spectrometry data and to distinguish the cheeses. Divle Tulum cheese had high levels of aldehydes, ketones, and alcohols and separated from all the other cheeses, and the cheeses including Dil, Hellim, Malatya, Orgu, and Urfa grouped together. The last group of cheeses had low levels of volatiles stemming probably from the restricting effect of scalding or cooking that are employed in the manufacture of these cheeses and on the biochemical and/or microbial activity. Civil, Ezine, and Mihalic cheeses had somewhat different aroma profiles, but they were closely located near the cheeses including Dil, Urfa, Orgu, etc. The results suggest that each variety of cheese had different volatiles profile and that the manufacturing technique as well as ripening conditions of the cheeses played a major role on the individual volatile profiles.
Journal of Food Science | 2015
Ali Adnan Hayaloglu; Nurullah Demir
Physical characteristics, antioxidant activity and chemical constituents of 12 cultivars (Prunus avium L.) of sweet cherry (Belge, Bing, Dalbasti, Durona di Cesena, Lambert, Merton Late, Starks Gold, Summit, Sweetheart, Van, Vista, and 0-900 Ziraat) were investigated. Significant differences (P < 0.05) were observed among tested cultivars for pH, total soluble solid, hardness, color parameters, antioxidant activities and pomological measurements (P < 0.05). The color parameters were important tools for the determination of fruit maturity and anthocyanin contents. Belge cultivar showed the highest levels of total phenolic and anthocyanin, while Starks Gold contained the lowest level of anthocyanins. The darker cultivars, measured by ABTS(+•) , DPPH(•) and FRAP, exhibited higher antioxidant activities than the lighter ones. Bing (42.78 g/kg) and Sweetheart (40.53 g/kg) cultivars contained higher levels of malic acid, which was the most intense organic acid in sweet cherries. Four different sugars were observed in the samples and their concentrations ordered as glucose > fructose >> sucrose > xylose. Sugar alcohol in the cherries was represented by sorbitol (more than 90%) and its concentration varied between 13.93 and 27.12 g/kg. As a result significant differences were observed among the physical properties and chemical constituents of the cherry cultivars.
Journal of Agricultural and Food Chemistry | 2009
Ihsan Karabulut; Gökhan Durmaz; Ali Adnan Hayaloglu
The chain length selectivity of three immobilized lipases, namely, Lipozyme TL IM from Thermomyces lanoginosus, Lipozyme RM IM from Rhizomucor miehei, and Novozym 435 from Candida antarctica, was determined in acidolysis performed in hexane using the homologous series of even carbon number, saturated fatty acids (SFAs) of 6-22 carbons. Triolein with individual SFAs or a mixture of equimolar quantities of SFAs was used as the substrate. The effects of operating variables including the mole ratio of fatty acid to triolein, temperature, enzyme dosage, and time on incorporation were also investigated. Incorporation abilities of the enzymes tested were found to be significantly different for most of FAs at the experimental conditions evaluated. Lipases acted weakly on SFAs of which the carbon chain length was shorter than eight carbon atoms and higher than 18 carbon atoms. Lipases showed a bell-shaped distribution in incorporation vs chain length plot with a maximum around C12-C16. Among the experimental parameters tested, the effect of the substrate mole ratio was greater than those of the others, and the highest incorporation was observed for C12 (36.98%), C14 (37.63%), and C16 (38.66%) at a 4:1 substrate mole ratio with Lipozyme TL IM. Lipases caused significantly different levels of acyl migration from sn-1,3 to sn-2 positions.
Journal of Food Protection | 2012
Songul Cakmakci; Bülent Çetin; Mustafa Gürses; Elif Dagdemir; Ali Adnan Hayaloglu
Moldy Civil is a mold-ripened variety of cheese produced mainly in eastern Turkey. This cheese is produced with Civil cheese and whey curd cheese (Lor). Civil cheese has had a geographical presence since 2009 and is manufactured with skim milk. In the production of Moldy Civil cheese, Civil cheese or a mixture of Civil and Lor cheese is pressed into goat skins or plastic bags and ripened for 3 months or longer. During the ripening period, natural contaminating molds grow on the surface of and inside the cheese. In this study, 186 mold strains were isolated from 41 samples of Moldy Civil cheese, and 165 of these strains were identified as Penicillium roqueforti. Identification and mycotoxicologic analyses were conducted using morphotypic and molecular methods. PCR amplicons of the ITS1-5.8S-ITS4 region were subjected to sequence analysis. This research is the first using molecular methods on Moldy Civil cheese. Mycotoxicologic analyses were conducted using thin-layer chromatography, and random amplified polymorphic DNA genotypes were determined using the ari1 primer. Of 165 isolates, only 28 produced no penicillic acid, P. roqueforti toxin, or roquefortine.
International Journal of Food Properties | 2013
Ali Adnan Hayaloglu; Ihsan Karabulut
Free fatty acids profiles of 11 different cheese varieties sold in Turkey were determined to assess the development of lipolysis. Results obtained showed that the concentrations of short chain fatty acids (C4 and C6 free fatty acids) were close in all cheeses (P > 0.05), except for Canak cheese. However, significant differences were noted among the samples for other free fatty acids including C8 to C18:2 (P < 0.05). Palmitic (C16) and oleic (C18:1) acids were the most abundant free fatty acids in all cheese samples. Principal component analysis was applied to simplify interpretation of the data and distinguish the variety of the cheeses on the plot. Canak cheese gave a dramatically different free fatty acid profile from the other cheeses, probably because of the fact that ripening of this variety is achieved in the earthenware pots for about 1 year. Van Otlu (ripened with special herbs) and Civil (ripened by spontaneously molding on its surface) cheeses differed from the others by ANOVA and principal component analysis techniques. In conclusion, the degree of lipolysis in the cheeses could be classified into extreme (Canak), high (Civil, Divle Tulum, Mihalic, and Van Otlu), mild (Ezine, Orgu, and Urfa), and low (Dil, Hellim, and Malatya) based on their FFA profiles.