Ali Asadollahi
Ferdowsi University of Mashhad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Asadollahi.
The Journal of Neuroscience | 2010
Shreesh P. Mysore; Ali Asadollahi; Eric I. Knudsen
Stimulus selection for gaze and spatial attention involves competition among stimuli across sensory modalities and across all of space. We demonstrate that such cross-modal, global competition takes place in the intermediate and deep layers of the optic tectum, a structure known to be involved in gaze control and attention. A variety of either visual or auditory stimuli located anywhere outside of a neurons receptive field (RF) were shown to suppress or completely eliminate responses to a visual stimulus located inside the RF in nitrous oxide sedated owls. The essential mechanism underlying this stimulus competition is global, divisive inhibition. Unlike the effect of the classical inhibitory surround, which decreases with distance from the RF center and shapes neuronal responses to individual stimuli, global inhibition acts across the entirety of space and modulates responses primarily in the context of multiple stimuli. Whereas the source of this global inhibition is as yet unknown, our data indicate that different networks mediate the classical surround and global inhibition. We hypothesize that this global, cross-modal inhibition, which acts automatically in a bottom-up manner even in sedated animals, is critical to the creation of a map of stimulus salience in the optic tectum.
The Journal of Neuroscience | 2007
Hermann Wagner; Ali Asadollahi; Peter Bremen; Frank Endler; Katrin Vonderschen; Mark von Campenhausen
Interaural time differences are an important cue for azimuthal sound localization. It is still unclear whether the same neuronal mechanisms underlie the representation in the brain of interaural time difference in different vertebrates and whether these mechanisms are driven by common constraints, such as optimal coding. Current sound localization models may be discriminated by studying the spectral distribution of response peaks in tuning curves that measure the sensitivity to interaural time difference. The sound localization system of the barn owl has been studied intensively, but data that would allow discrimination between currently discussed models are missing from this animal. We have therefore obtained extracellular recordings from the time-sensitive subnuclei of the barn owls inferior colliculus. Response peaks were broadly scattered over the physiological range of interaural time differences. A change in the representation of the interaural phase differences with frequency was not observed. In some neurons, response peaks fell outside the physiological range of interaural time differences. For a considerable number of neurons, the peak closest to zero interaural time difference was not the behaviorally relevant peak. The data are in best accordance with models suggesting that a place code underlies the representation of interaural time difference. The data from the high-frequency range, but not from the low-frequency range, are consistent with predictions of optimal coding. We speculate that the deviation of the representation of interaural time difference from optimal-coding models in the low-frequency range is attributable to the diminished importance of low frequencies for catching prey in this species.
The Journal of Neuroscience | 2011
Shreesh P. Mysore; Ali Asadollahi; Eric I. Knudsen
Essential to the selection of the next target for gaze or attention is the ability to compare the strengths of multiple competing stimuli (bottom-up information) and to signal the strongest one. Although the optic tectum (OT) has been causally implicated in stimulus selection, how it computes the strongest stimulus is unknown. Here, we demonstrate that OT neurons in the barn owl systematically encode the relative strengths of simultaneously occurring stimuli independently of sensory modality. Moreover, special “switch-like” responses of a subset of neurons abruptly increase when the stimulus inside their receptive field becomes the strongest one. Such responses are not predicted by responses to single stimuli and, indeed, are eliminated in the absence of competitive interactions. We demonstrate that this sensory transformation substantially boosts the representation of the strongest stimulus by creating a binary discrimination signal, thereby setting the stage for potential winner-take-all target selection for gaze and attention.
Nature Neuroscience | 2010
Ali Asadollahi; Shreesh P. Mysore; Eric I. Knudsen
The mechanisms by which the brain selects a particular stimulus as the next target for gaze are poorly understood. A cholinergic nucleus in the owls midbrain exhibits functional properties that suggest its role in bottom-up stimulus selection. Neurons in the nucleus isthmi pars parvocellularis (Ipc) responded to wide ranges of visual and auditory features, but they were not tuned to particular values of those features. Instead, they encoded the relative strengths of stimuli across the entirety of space. Many neurons exhibited switch-like properties, abruptly increasing their responses to a stimulus in their receptive field when it became the strongest stimulus. This information propagates directly to the optic tectum, a structure involved in gaze control and stimulus selection, as periodic (25–50 Hz) bursts of cholinergic activity. The functional properties of Ipc neurons resembled those of a salience map, a core component in computational models for spatial attention and gaze control.
Behavioural Brain Research | 2004
Nasser Naghdi; Ali Asadollahi
In addition to their well-known genomic effects via intracellular receptors, androgens rapidly alter neuronal excitability through a nongenomic pathway. The nongenomic effect of testosterone, as the main androgen, apart from its traditional effects, was assessed in one of the fundamental centers of learning and memory, the hippocampus, on long-term memory (LTM) in passive avoidance conditioning. Different doses of testosterone enanthate (T) or testosterone-BSA (T-BSA) bilaterally were injected into the CA1 region of the hippocampus 15 min before shock delivery (1 mA during 5 s) in a two-compartment passive avoidance apparatus. After 24 h, animals were tested for passive avoidance retrieval. Bilateral injection of 20 microg T or 55 microg T-BSA into the CA1 significantly decreases step-through latency. Therefore, it seems that testosterone can impair LTM in passive avoidance conditioning both via intracellular receptors and through nongenomic pathway.
The Journal of Neuroscience | 2011
Ali Asadollahi; Shreesh P. Mysore; Eric I. Knudsen
In a natural scene, multiple stimuli compete for the control of gaze direction and attention. The nucleus isthmi pars parvocellularis (Ipc) is a cholinergic, midbrain nucleus that is reciprocally interconnected to the optic tectum, a structure known to be involved in the control of gaze and attention. Previous research has shown that the responses of many Ipc units to a visual stimulus presented inside the classical receptive field (RF) can be powerfully inhibited when the strength of a distant, competing stimulus becomes the stronger stimulus. This study investigated further the nature of competitive interactions in the Ipc of owls by using two complementary protocols: in the first protocol, we measured the effects of a distant stimulus on responses to an RF stimulus located at different positions inside the RF; in the second protocol, we measured the effects of a distant stimulus on responses to RF stimuli of different strengths. The first protocol demonstrated that the effect of a competing stimulus is purely divisive: the competitor caused a proportional reduction in responses to the RF stimulus that did not alter either the location or sharpness of spatial tuning. The second protocol demonstrated that, for most units, the strength of this divisive inhibition is regulated powerfully by the relative strengths of the competing stimuli: inhibition was strong when the competitor was the stronger stimulus and weak when the competitor was the weaker stimulus. The data indicate that competitive interactions in the Ipc depend on feedback and a globally divisive inhibitory network.
European Journal of Neuroscience | 2010
Ali Asadollahi; Frank Endler; Israel Nelken; Hermann Wagner
Humans and animals are able to detect signals in noisy environments. Detection improves when the noise and the signal have different interaural phase relationships. The resulting improvement in detection threshold is called the binaural masking level difference. We investigated neural mechanisms underlying the release from masking in the inferior colliculus of barn owls in low‐frequency and high‐frequency neurons. A tone (signal) was presented either with the same interaural time difference as the noise (masker) or at a 180° phase shift as compared with the interaural time difference of the noise. The changes in firing rates induced by the addition of a signal of increasing level while masker level was kept constant was well predicted by the relative responses to the masker and signal alone. In many cases, the response at the highest signal levels was dominated by the response to the signal alone, in spite of a significant response to the masker at low signal levels, suggesting the presence of occlusion. Detection thresholds and binaural masking level differences were widely distributed. The amount of release from masking increased with increasing masker level. Narrowly tuned neurons in the central nucleus of the inferior colliculus had detection thresholds that were lower than or similar to those of broadly tuned neurons in the external nucleus of the inferior colliculus. Broadly tuned neurons exhibited higher masking level differences than narrowband neurons. These data suggest that detection has different spectral requirements from localization.
Nature Communications | 2016
Ali Asadollahi; Eric I. Knudsen
A primary function of the midbrain stimulus selection network is to compute the highest-priority location for attention and gaze. Here we report the contribution of a specific cholinergic circuit to this computation. We functionally disconnected the tegmental cholinergic nucleus isthmi pars parvocellularis (Ipc) from the optic tectum (OT) in barn owls by reversibly blocking excitatory transmission in the Ipc. Focal blockade in the Ipc decreases the gain and spatial discrimination of OT units specifically for the locations represented by the visual receptive fields (VRFs) of the disconnected Ipc units, and causes OT VRFs to shift away from that location. The results demonstrate mechanisms by which this cholinergic circuit controls bottom-up stimulus competition and by which top-down signals can bias this competition, and they establish causal linkages between a particular circuit, gain control and dynamic shifts of VRFs. This circuit may perform the same function in all vertebrate species.
Archives of Biological Sciences | 2017
Seyed Javad Saghravanian; Masoud Fereidoni; Ali Asadollahi
KAUMS Journal | 2016
Seyyed Javad Saghravanian; Masoud Fereidoni; Ali Asadollahi