Ali Benhaddou-Andaloussi
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Benhaddou-Andaloussi.
Journal of Ethnopharmacology | 2009
Bouchra Meddah; Robert Ducroc; Moulay El Abbes Faouzi; Bruno Eto; Lahcen Mahraoui; Ali Benhaddou-Andaloussi; Louis C. Martineau; Yahia Cherrah; Pierre S. Haddad
AIM OF THE STUDY Nigella sativa L. (Ranunculaceae) seeds have been used traditionally for centuries, notably for treating diabetes. MATERIALS AND METHODS We studied the effects of the crude aqueous extract of Nigella sativa seeds on intestinal glucose absorption in vitro using a short-circuit current technique and in vivo using an oral glucose tolerance test. RESULTS The aqueous extract of Nigella sativa (0.1 pg/ml to 100 ng/ml) exerted dose-dependent inhibition of sodium-dependent glucose transport across isolated rat jejunum. Maximal inhibition exceeded 80% and IC50 was close to 10 pg/ml. An oral glucose tolerance test was carried out in rats after the initial dose and after a 6-week treatment of Nigella sativa (2 g/(kg day)), and compared to metformin (300 mg/(kg day)). Chronic Nigella sativa treatment improved glucose tolerance as efficiently as metformin. Nigella sativa and metformin also reduced body weight without any toxic effect. CONCLUSIONS To our knowledge, this is the first demonstration that Nigella sativa directly inhibits the electrogenic intestinal absorption of glucose in vitro. Together with the observed improvement of glucose tolerance and body weight in rats after chronic oral administration in vivo, these effects further validate the traditional use of Nigella sativa seeds against diabetes.
Molecular Nutrition & Food Research | 2010
Hoda M. Eid; Louis C. Martineau; Ammar Saleem; Asim Muhammad; Diane Vallerand; Ali Benhaddou-Andaloussi; Lidia Nistor; Arvind Afshar; John T. Arnason; Pierre S. Haddad
Several medicinal plants that stimulate glucose uptake in skeletal muscle cells were identified from among species used by the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes. This study aimed to elucidate the mechanism of action of one of these products, the berries of Vaccinium vitis idaea, as well as to isolate and identify its active constituents using a classical bioassay-guided fractionation approach. Western immunoblot analysis in C2C12 muscle cells revealed that the ethanol extract of the berries stimulated the insulin-independent AMP-activated protein kinase (AMPK) pathway. The extract mildly inhibited ADP-stimulated oxygen consumption in isolated mitochondria, an effect consistent with metabolic stress and the ensuing stimulation of AMPK. This mechanism is highly analogous to that of Metformin. Fractionation guided by glucose uptake activity resulted in the isolation of ten compounds. The two most active, quercetin-3-O-glycosides, enhanced glucose uptake by 38-59% (50 muM; 18 h treatment) in the absence of insulin. Quercetin aglycone, a minor constituent, stimulated uptake by 37%. The quercetin glycosides and the aglycone stimulated the AMPK pathway at concentrations of 25-100 muM, but only the aglycone inhibited ATP synthase in isolated mitochondria (by 34 and 79% at 25 and 100 muM, respectively). This discrepancy suggests that the activity of the glycosides may require hydrolysis to the aglycone form. These findings indicate that quercetin and quercetin 3-O-glycosides are responsible for the antidiabetic activity of V. vitis crude berry extract mediated by AMPK. These common plant products may thus have potential applications for the prevention and treatment of insulin resistance and other metabolic diseases.
Diabetes, Obesity and Metabolism | 2010
Ali Benhaddou-Andaloussi; Louis C. Martineau; Diane Vallerand; Y. Haddad; Arvind Afshar; A. Settaf; Pierre S. Haddad
Aim: Nigella sativa (N. sativa) is a plant widely used in traditional medicine of North African countries. During the last decade, several studies have shown that extracts from the seeds of N. sativa have antidiabetic effects.
Evidence-based Complementary and Alternative Medicine | 2011
Ali Benhaddou-Andaloussi; Louis C. Martineau; Tri Vuong; Bouchra Meddah; Padma Madiraju; Abdellatif Settaf; Pierre S. Haddad
The antidiabetic effect of N. sativa seed ethanol extract (NSE) was assessed in Meriones shawi after development of diabetes. Meriones shawi were divided randomly into four groups: normal control, diabetic control, diabetic treated with NSE (2 g eq plant/kg) or with metformin (300 mg/kg) positive control, both administered by daily intragastric gavage for 4 weeks. Glycaemia and body weight were evaluated weekly. At studys end, an Oral Glucose Tolerance Test (OGTT) was performed to estimate insulin sensitivity. Upon sacrifice, plasma lipid profile, insulin, leptin, and adiponectin levels were assessed. ACC phosphorylation and Glut4 protein content were determined in liver and skeletal muscle. NSE animals showed a progressive normalization of glycaemia, albeit slower than that of metformin controls. Moreover, NSE increased insulinemia and HDL-cholesterol, compared to diabetic controls. Leptin and adiponectin were unchanged. NSE treatment decreased OGTT and tended to decrease liver and muscle triglyceride content. NSE stimulated muscle and liver ACC phosphorylation and increased muscle Glut4. These results confirm NSEs previously reported hypoglycaemic and hypolipidemic activity. More significantly, our data demonstrate that in vivo treatment with NSE exerts an insulin-sensitizing action by enhancing ACC phosphorylation, a major component of the insulin-independent AMPK signaling pathway, and by enhancing muscle Glut4 expression.
Journal of Ethnopharmacology | 2010
Lidia A. Nistor Baldea; Louis C. Martineau; Ali Benhaddou-Andaloussi; John T. Arnason; Emile Levy; Pierre S. Haddad
BACKGROUND Type II diabetes and obesity are major health problems worldwide and aboriginal peoples are particularly at risk. To address this problem in Canadian native populations who find modern pharmaceuticals culturally inappropriate, our team is testing the traditional pharmacopeia of the James Bay Cree for anti-diabetic and anti-obesity activities. More specifically, the aim of the present study was to define the effects of traditional plants on intestinal glucose absorption, an under-appreciated anti-hyperglycaemic and anti-obesity activity. METHODS Crude ethanol extracts of 17 Boreal forest medicinal plants were tested in vitro using the Caco-2 human enterocytic cell line and in vivo using an oral glucose tolerance test. RESULTS Thirteen of seventeen extracts were observed to significantly inhibit uptake when administered simultaneously with (3)H-deoxyglucose. Inhibition was dose-dependent and, in a few cases, even surpassed that induced by a combination of the positive controls. To validate these effects in vivo, four plant extracts were administered by intragastric gavage at 250 mg/kg to normal rats simultaneously with a 3g/kg bolus of glucose. This resulted in a decrease in peak glycaemia by approximately 40% for two of them. Similarly, only 2 extracts reduced glucose transport after long term incubation and this could be related to reductions in the expression of SGLT-1 or GLUT-2 proteins. CONCLUSIONS These findings indicate that competitive inhibition of intestinal glucose uptake can be achieved by crude extracts of medicinal plants. Such extracts could be taken with meals to control postprandial glycaemia and reduce caloric intake in high risk populations that are positively inclined towards traditional medicine.
Pharmaceutical Biology | 2008
Ali Benhaddou-Andaloussi; Louis C. Martineau; Danielle Spoor; Tri Vuong; Charles Leduc; Erik Joly; Andrew J. Burt; Bouchra Meddah; Abdellatif Settaf; John T. Arnason; Marc Prentki; Pierre S. Haddad
Abstract The seeds of Nigella sativa. L. (NS), a plant of the Runanculaceae family, are used in traditional medicine in North Africa and the Middle East for the treatment of diabetes. Despite widespread use and a number of scientific studies, the target tissues and cellular mechanisms of action of this plant product are not well understood. This study evaluated the effects of NS seed crude ethanol extract on insulin secretion in INS832/13 and β TC-tet lines of pancreatic β-cells and on glucose disposal by C2C12 skeletal muscle cells and 3T3-L1 adipocytes. An 18-h treatment with NS amplified glucose-stimulated insulin secretion by more than 35% without affecting sensitivity to glucose. NS treatment also accelerated β-cell proliferation. An 18-h treatment with NS increased basal glucose uptake by 55% (equivalent to approximately two-fold the effect of 100 nM insulin) in muscle cells and approximately by 400% (equal to the effect of 100 nM insulin) in adipocytes; this effect was perfectly additive to that of insulin in adipocytes. Finally, NS treatment of pre-adipocytes undergoing differentiation accelerated triglyceride accumulation comparably with treatment with 10 μ M rosiglitazone. It is concluded that the well-documented in vivo. antihyperglycemic effects of NS seed extract are attributable to a combination of therapeutically relevant insulinotropic and insulin-like properties.
Phytomedicine | 2006
Louis C. Martineau; Audrey Couture; Danielle Spoor; Ali Benhaddou-Andaloussi; Cory S. Harris; Bouchra Meddah; Charles Leduc; Andrew J. Burt; Tri Vuong; Phuong Mai Le; Marc Prentki; Steffany A. L. Bennett; John T. Arnason; Pierre S. Haddad
Journal of Ethnopharmacology | 2004
Phuong Mai Le; Ali Benhaddou-Andaloussi; Aziz Elimadi; Abdellatif Settaf; Yahia Cherrah; Pierre S. Haddad
Canadian Journal of Physiology and Pharmacology | 2006
Danielle Spoor; Louis C. Martineau; Charles Leduc; Ali Benhaddou-Andaloussi; Bouchra Meddah; Cory HarrisC. Harris; Andrew BurtA. Burt; Marie-Hélène FraserM.-H. Fraser; Jason Coonishish; Erik Joly; Alain Cuerrier; Steffany A. L. Bennett; Timothy Johns; Marc Prentki; John T. Arnason; Pierre S. Haddad
Focus on Alternative and Complementary Therapies | 2010
Pierre S. Haddad; Louis C. Martineau; Danielle Spoor; Charles Leduc; Ali Benhaddou-Andaloussi; Erik Joly; Marc Prentki; Cory S. Harris; Steffany A. L. Bennett; Andrew J. Burt; John T. Arnason