Ali Bilici
Ankara University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Bilici.
Journal of Macromolecular Science, Part A | 2006
I˙smet Kaya; Ali Bilici
The oxidative polycondensation of 2‐[(4‐hydroxyphenyl) imino methyl]‐1‐naphtol (4‐HPIMN) has been accomplished by using NaOCl, H2O2 and air O2 oxidants in aqueous alkaline medium. Optimum reaction conditions of the oxidative polycondensation and the main parameters of the process were established. At optimum reaction conditions, yield of the products were found to be 77.0%, 91.6% and 99.0% for H2O2, air O2 and NaOCl oxidants, respectively. The structures of the obtained monomer and oligomer were confirmed by FT‐IR, UV‐Vis, 1H‐ and 13C‐NMR and elemental analysis. The characterization was made by TG‐DTA, SEC and solubility tests. The 1H‐ and 13C‐NMR data shows that the polymerization proceeded by the C–C coupling of ortho positions according to –OH group of 4‐HPIMN. The molecular weight distribution values of the product were determined by using size exclusion chromatography (SEC). The number‐average molecular weight (Mn), weight‐average molecular weight (Mw) and polydispersity index (PDI) values of O‐4‐HPIMN were found to be 1777, 2225 and 1.252; 1790, 2250 and 1.257; 4540, 5139 g mol−1, and 1.132 for NaOCl, H2O2 and air O2 oxidants, respectively. According to TG analyses, the carbonaceous residue of 4‐HPIMN and O‐4‐HPIMN was found to be 28.02% and 44.22% at 1000°C, respectively. Thermal analyses of O‐4‐HPIMN‐Cd, O‐4‐HPIMN‐Co, O‐4‐HPIMN‐Cu, O‐4‐HPIMN‐Fe, O‐4‐HPIMN‐Mg, O‐4‐HPIMN‐Mn, O‐4‐HPIMN‐Ni, O‐4‐HPIMN‐Pb and O‐4‐HPIMN‐Zn oligomer‐metal complex compounds were investigated in N2 atmosphere between 15–1000°C.
Biomacromolecules | 2010
Ali Bilici; İsmet Kaya; Mehmet Yıldırım
In this paper, the results on horseradish peroxidase (HRP)-catalyzed oxidative polymerization of amine-functionalized fluorene monomer, 2-amino fluorene (AF), are reported. The resulting polymer exhibits an exciting molecular structure and spectral properties. FT-IR and NMR studies show that the two fluorene units come together by forming an intermediate six-membered pyrazine ring and these formed dimeric units are linked to the each other through C-C couplings to produce fully conjugated polymer structure (AFP). Further characterizations were performed by means of GPC, TGA, DSC, SEM, CV (cyclic voltammetry), fluorescence analyses, and solubility tests. Optical band gaps of this electroactive polymer was found to be 2.60 eV. AFP emits red light and its emission maxima is drastically affected by the kind of the solvents used. In addition, obtained polymer is soluble in common polar and apolar organic solvents.
Journal of Applied Polymer Science | 2007
İsmet Kaya; Ali Bilici
Synthetic Metals | 2006
İsmet Kaya; Ali Bilici
Polymers for Advanced Technologies | 2008
İsmet Kaya; Ali Bilici; Murat Gül
Journal of Molecular Catalysis B-enzymatic | 2010
Ali Bilici; İsmet Kaya; Mehmet Yıldırım; Fatih Doğan
Reactive & Functional Polymers | 2011
Ali Bilici; Fatih Doğan; Mehmet Yıldırım; İsmet Kaya
Polymer International | 2009
İsmet Kaya; Fatih Doğan; Ali Bilici
Synthetic Metals | 2009
İsmet Kaya; Ali Bilici; Mehmet Saçak
Journal of Applied Polymer Science | 2006
İsmet Kaya; Ali Bilici; Mehmet Saçak