Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali G. Gharavi is active.

Publication


Featured researches published by Ali G. Gharavi.


Cell | 2001

Molecular mechanisms of human hypertension

Richard P. Lifton; Ali G. Gharavi; David S. Geller

Supported in part by a Specialized Center of Research in Hypertension and NIH K08 awards (to A. G. G. and D. S. G.). R. P. L. is an Investigator of the Howard Hughes Medical Institute.


Nature | 2012

Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities

Lynn M. Boyden; Murim Choi; Keith A. Choate; Carol Nelson-Williams; Anita Farhi; Hakan R. Toka; Irina Tikhonova; Robert D. Bjornson; Shrikant Mane; Giacomo Colussi; Marcel Lebel; Richard D. Gordon; Ben A. Semmekrot; Alain Poujol; Matti Välimäki; Maria Elisabetta De Ferrari; Sami A. Sanjad; Michael Gutkin; Fiona E. Karet; Joseph R. Tucci; Jim R. Stockigt; Kim M. Keppler-Noreuil; Craig C. Porter; Sudhir K. Anand; Margo Whiteford; Ira Davis; Stephanie Dewar; Alberto Bettinelli; Jeffrey J. Fadrowski; Craig W. Belsha

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K+ and H+ excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin–RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na–Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na–Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K+ and pH homeostasis.


Nature Genetics | 2011

Genome-wide association study identifies susceptibility loci for IgA nephropathy

Ali G. Gharavi; Krzysztof Kiryluk; Murim Choi; Yifu Li; Ping Hou; Jingyuan Xie; Simone Sanna-Cherchi; Clara J. Men; Bruce A. Julian; Robert J. Wyatt; Jan Novak; John Cijiang He; Haiyan Wang; Jicheng Lv; Li Zhu; Weiming Wang; Zhaohui Wang; Kasuhito Yasuno; Murat Gunel; Shrikant Mane; Sheila Umlauf; Irina Tikhonova; Isabel Beerman; Silvana Savoldi; Riccardo Magistroni; Gian Marco Ghiggeri; Monica Bodria; Francesca Lugani; Pietro Ravani; Claudio Ponticelli

We carried out a genome-wide association study of IgA nephropathy, a major cause of kidney failure worldwide. We studied 1,194 cases and 902 controls of Chinese Han ancestry, with targeted follow up in Chinese and European cohorts comprising 1,950 cases and 1,920 controls. We identified three independent loci in the major histocompatibility complex, as well as a common deletion of CFHR1 and CFHR3 at chromosome 1q32 and a locus at chromosome 22q12 that each surpassed genome-wide significance (P values for association between 1.59 × 10−26 and 4.84 × 10−9 and minor allele odds ratios of 0.63–0.80). These five loci explain 4–7% of the disease variance and up to a tenfold variation in interindividual risk. Many of the alleles that protect against IgA nephropathy impart increased risk for other autoimmune or infectious diseases, and IgA nephropathy risk allele frequencies closely parallel the variation in disease prevalence among Asian, European and African populations, suggesting complex selective pressures.


Nature Genetics | 2000

IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23

Ali G. Gharavi; Yan Y; Francesco Scolari; Francesco Paolo Schena; Giovanni M. Frascà; Gian Marco Ghiggeri; Cooper K; A. Amoroso; Battista Fabio Viola; Battini G; Gianluca Caridi; Canova C; Farhi A; Subramanian; Carol Nelson-Williams; Susan Y. Woodford; Bruce A. Julian; Robert J. Wyatt; Richard P. Lifton

End-stage renal disease (ESRD) is a major public health problem, affecting 1 in 1,000 individuals and with an annual death rate of 20% despite dialysis treatment. IgA nephropathy (IgAN) is the most common form of glomerulonephritis, a principal cause of ESRD worldwide; it affects up to 1.3% of the population and its pathogenesis is unknown. Kidneys of people with IgAN show deposits of IgA-containing immune complexes with proliferation of the glomerular mesangium (Fig. 1). Typical clinical features include onset before age 40 with haematuria and proteinuria (blood and protein in the urine), and episodes of gross haematuria following mucosal infections are common; 30% of patients develop progressive renal failure. Although not generally considered a hereditary disease, striking ethnic variation in prevalence and familial clustering, along with subclinical renal abnormalities among relatives of IgAN cases, have suggested a heretofore undefined genetic component. By genome-wide analysis of linkage in 30 multiplex IgAN kindreds, we demonstrate linkage of IgAN to 6q22–23 under a dominant model of transmission with incomplete penetrance, with a lod score of 5.6 and 60% of kindreds linked. These findings for the first time indicate the existence of a locus with large effect on development of IgAN and identify the chromosomal location of this disease gene.


Journal of The American Society of Nephrology | 2011

The Pathophysiology of IgA Nephropathy

Hitoshi Suzuki; Krzysztof Kiryluk; Jan Novak; Zina Moldoveanu; Andrew B. Herr; Matthew B. Renfrow; Robert J. Wyatt; Francesco Scolari; Jiri Mestecky; Ali G. Gharavi; Bruce A. Julian

Here we discuss recent advances in understanding the biochemical, immunologic, and genetic pathogenesis of IgA nephropathy, the most common primary glomerulonephritis. Current data indicate that at least four processes contribute to development of IgA nephropathy. Patients with IgA nephropathy often have a genetically determined increase in circulating levels of IgA1 with galactose-deficient O-glycans in the hinge-region (Hit 1). This glycosylation aberrancy is, however, not sufficient to induce renal injury. Synthesis and binding of antibodies directed against galactose-deficient IgA1 are required for formation of immune complexes that accumulate in the glomerular mesangium (Hits 2 and 3). These immune complexes activate mesangial cells, inducing proliferation and secretion of extracellular matrix, cytokines, and chemokines, which result in renal injury (Hit 4). Recent genome-wide association studies identify five distinct susceptibility loci--in the MHC on chromosome 6p21, the complement factor H locus on chromosome 1q32, and in a cluster of genes on chromosome 22q22--that potentially influence these processes and contain candidate mediators of disease. The significant variation in prevalence of risk alleles among different populations may also explain some of the sizable geographic variation in disease prevalence. Elucidation of the pathogenesis of IgA nephropathy provides an opportunity to develop disease-specific therapies.


Nature Genetics | 2004

Mutations in SEC63 cause autosomal dominant polycystic liver disease

Sonia Davila; Laszlo Furu; Ali G. Gharavi; Xin Tian; Tamehito Onoe; Qi Qian; Airong Li; Yiqiang Cai; Patrick S. Kamath; Bernard F. King; Pablo J. Azurmendi; Pia Tahvanainen; Helena Kääriäinen; Krister Höckerstedt; Olivier Devuyst; Yves Pirson; Rodolfo S. Martin; Richard P. Lifton; Esa Tahvanainen; Vicente E. Torres; Stefan Somlo

Mutations in PRKCSH, encoding the β-subunit of glucosidase II, an N-linked glycan-processing enzyme in the endoplasmic reticulum (ER), cause autosomal dominant polycystic liver disease. We found that mutations in SEC63, encoding a component of the protein translocation machinery in the ER, also cause this disease. These findings are suggestive of a role for cotranslational protein-processing pathways in maintaining epithelial luminal structure and implicate noncilial ER proteins in human polycystic disease.


Journal of The American Society of Nephrology | 2008

Aberrant IgA1 Glycosylation Is Inherited in Familial and Sporadic IgA Nephropathy

Ali G. Gharavi; Zina Moldoveanu; Robert J. Wyatt; Catherine V. Barker; Susan Y. Woodford; Richard P. Lifton; Jiri Mestecky; Jan Novak; Bruce A. Julian

IgA nephropathy (IgAN) is a complex trait determined by genetic and environmental factors. Most IgAN patients exhibit a characteristic undergalactosylation of the O-glycans of the IgA1 hinge region, which promotes formation and glomerular deposition of immune complexes. It is not known whether this aberrant glycosylation is the result of an acquired or inherited defect, or whether the presence of aberrant IgA1 glycoforms alone can produce IgAN. A newly validated lectin enzyme-linked immunosorbent assay (ELISA) was used to determine the serum level of galactose-deficient IgA1 (Gd-IgA1) in a cohort of 89 IgAN patients and 266 of their relatives. High Gd-IgA1 levels (> or =95th percentile for controls) were observed in all 5 available patients with familial IgAN, in 21 of 45 (47%) of their at-risk relatives (assuming autosomal dominant inheritance), and in only 1 of 19 (5%) of unrelated individuals who married into the family. This provides evidence that abnormal IgA1 glycosylation is an inherited rather than acquired trait. Similarly, Gd-IgA1 levels were high in 65 of 84 (78%) patients with sporadic IgAN and in 50 of 202 (25%) blood relatives. Heritability of Gd-IgA1 was estimated at 0.54 (P = 0.0001), and segregation analysis suggested the presence of a major dominant gene on a polygenic background. Because most relatives with abnormal IgA1 glycoforms were asymptomatic, additional cofactors must be required for IgAN to develop. The fact that abnormal IgA1 glycosylation clusters in most but not all families suggests that measuring Gd-IgA1 may help distinguish patients with different pathogenic mechanisms of disease.


Nature Genetics | 2014

Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens

Krzysztof Kiryluk; Li Y; Francesco Scolari; Sanna-Cherchi S; Murim Choi; Verbitsky M; Fasel D; Lata S; Sindhuri Prakash; Shapiro S; Fischman C; Holly J. Snyder; Gerald B. Appel; Izzi C; Viola Bf; Dallera N; Del Vecchio L; Barlassina C; Salvi E; F. Bertinetto; A. Amoroso; Savoldi S; Rocchietti M; Alessandro Amore; Licia Peruzzi; R. Coppo; Maurizio Salvadori; Pietro Ravani; Riccardo Magistroni; Ghiggeri Gm

We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six new genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geospatial distribution of risk alleles is highly suggestive of multi-locus adaptation, and genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host–intestinal pathogen interactions in shaping the genetic landscape of IgAN.


Kidney International | 2011

Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schonlein purpura nephritis

Krzysztof Kiryluk; Zina Moldoveanu; John T. Sanders; T. Matthew Eison; Hitoshi Suzuki; Bruce A. Julian; Jan Novak; Ali G. Gharavi; Robert J. Wyatt

Serum galactose-deficient immunoglobulin A1 (Gd-IgA1) is an inherited risk factor for adult IgA nephropathy (IgAN). In this paper, we determined the heritability of serum Gd-IgA1 levels in children with IgAN and Henoch-Schönlein purpura nephritis (HSPN), two disorders with clinical phenotypes sharing common pathogenic mechanisms. Serum Gd-IgA1 concentrations were quantified using a Helix aspersa-lectin-based enzyme-linked immunosorbent assay. As a group, 34 children with either disorder (20 with HSPN and 14 with IgAN) had significantly higher Gd-IgA1 levels compared with 51 age- and ethnicity-matched pediatric controls. Serum levels of Gd-IgA1 were also elevated in a large fraction of 54 first-degree relatives of pediatric IgAN and HSPN patients compared with 141 unrelated healthy adult controls. A unilineal transmission of the trait was found in 17, bilineal transmission in 1, and sporadic occurrence in 5 of 23 families when both parents and the patient were analyzed. There was a significant age-, gender-, and household-adjusted heritability of serum galactose-deficient IgA1 estimated at 76% in pediatric IgAN and at 64% in HSPN patients. Thus, serum galactose-deficient IgA1 levels are highly inherited in pediatric patients with IgAN and HSPN, providing support for another shared pathogenic link between these disorders.


American Journal of Human Genetics | 2012

Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

Simone Sanna-Cherchi; Krzysztof Kiryluk; Katelyn E. Burgess; Monica Bodria; Matthew Sampson; Dexter Hadley; Shannon N. Nees; Miguel Verbitsky; Brittany J. Perry; Roel Sterken; Vladimir J. Lozanovski; Anna Materna-Kiryluk; Cristina Barlassina; Akshata Kini; Valentina Corbani; Alba Carrea; Danio Somenzi; Corrado Murtas; Nadica Ristoska-Bojkovska; Claudia Izzi; Beatrice Bianco; Marcin Zaniew; Hana Flögelová; Patricia L. Weng; Nilgun Kacak; Stefania Giberti; Maddalena Gigante; Adela Arapović; Kristina Drnasin; Gianluca Caridi

We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10(-11)). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10(-58)). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay.

Collaboration


Dive into the Ali G. Gharavi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Novak

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Julian

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robert J. Wyatt

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hitoshi Suzuki

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge