Ali Gooya
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Gooya.
IEEE Transactions on Medical Imaging | 2012
Ali Gooya; Kilian M. Pohl; Michel Bilello; L. Cirillo; George Biros; Elias R. Melhem; Christos Davatzikos
We present a generative approach for simultaneously registering a probabilistic atlas of a healthy population to brain magnetic resonance (MR) scans showing glioma and segmenting the scans into tumor as well as healthy tissue labels. The proposed method is based on the expectation maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the original atlas into one with tumor and edema adapted to best match a given set of patients images. The modified atlas is registered into the patient space and utilized for estimating the posterior probabilities of various tissue labels. EM iteratively refines the estimates of the posterior probabilities of tissue labels, the deformation field and the tumor growth model parameters. Hence, in addition to segmentation, the proposed method results in atlas registration and a low-dimensional description of the patient scans through estimation of tumor model parameters. We validate the method by automatically segmenting 10 MR scans and comparing the results to those produced by clinical experts and two state-of-the-art methods. The resulting segmentations of tumor and edema outperform the results of the reference methods, and achieve a similar accuracy from a second human rater. We additionally apply the method to 122 patients scans and report the estimated tumor model parameters and their relations with segmentation and registration results. Based on the results from this patient population, we construct a statistical atlas of the glioma by inverting the estimated deformation fields to warp the tumor segmentations of patients scans into a common space.
IEEE Transactions on Medical Imaging | 2011
Ali Gooya; George Biros; Christos Davatzikos
This paper investigates the problem of atlas registration of brain images with gliomas. Multiparametric imaging modalities (T1, T1-CE, T2, and FLAIR) are first utilized for segmentations of different tissues, and to compute the posterior probability map (PBM) of membership to each tissue class, using supervised learning. Similar maps are generated in the initially normal atlas, by modeling the tumor growth, using reaction-diffusion equation. Deformable registration using a demons-like algorithm is used to register the patient images with the tumor bearing atlas. Joint estimation of the simulated tumor parameters (e.g., location, mass effect and degree of infiltration), and the spatial transformation is achieved by maximization of the log-likelihood of observation. An expectation-maximization algorithm is used in registration process to estimate the spatial transformation and other parameters related to tumor simulation are optimized through asynchronous parallel pattern search (APPSPACK). The proposed method has been evaluated on five simulated data sets created by statistically simulated deformations (SSD), and fifteen real multichannel glioma data sets. The performance has been evaluated both quantitatively and qualitatively, and the results have been compared to ORBIT, an alternative method solving a similar problem. The results show that our method outperforms ORBIT, and the warped templates have better similarity to patient images.
IEEE Transactions on Image Processing | 2008
Ali Gooya; Hongen Liao; Kiyoshi Matsumiya; Ken Masamune; Yoshitaka Masutani; Takeyoshi Dohi
In this paper, a level-set-based geometric regularization method is proposed which has the ability to estimate the local orientation of the evolving front and utilize it as shape induced information for anisotropic propagation. We show that preserving anisotropic fronts can improve elongations of the extracted structures, while minimizing the risk of leakage. To that end, for an evolving front using its shape-offset level-set representation, a novel energy functional is defined. It is shown that constrained optimization of this functional results in an anisotropic expansion flow which is useful for vessel segmentation. We have validated our method using synthetic data sets, 2-D retinal angiogram images and magnetic resonance angiography volumetric data sets. A comparison has been made with two state-of-the-art vessel segmentation methods. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our regularization method is a promising tool to improve the efficiency of both techniques.
medical image computing and computer assisted intervention | 2011
Ali Gooya; Kilian M. Pohl; Michel Bilello; George Biros; Christos Davatzikos
This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.
Magnetic Resonance Materials in Physics Biology and Medicine | 2016
Peng Peng; Karim Lekadir; Ali Gooya; Ling Shao; Steffen E. Petersen; Alejandro F. Frangi
Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.
Medical Image Analysis | 2016
Serkan Çimen; Ali Gooya; Michael Grass; Alejandro F. Frangi
Despite continuous progress in X-ray angiography systems, X-ray coronary angiography is fundamentally limited by its 2D representation of moving coronary arterial trees, which can negatively impact assessment of coronary artery disease and guidance of percutaneous coronary intervention. To provide clinicians with 3D/3D+time information of coronary arteries, methods computing reconstructions of coronary arteries from X-ray angiography are required. Because of several aspects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction from X-ray coronary angiography has led to vast amount of research and it still remains as a challenging and dynamic research area. In this paper, we review the state-of-the-art approaches on reconstruction of high-contrast coronary arteries from X-ray angiography. We mainly focus on the theoretical features in model-based (modelling) and tomographic reconstruction of coronary arteries, and discuss the evaluation strategies. We also discuss the potential role of reconstructions in clinical decision making and interventional guidance, and highlight areas for future research.
information processing in medical imaging | 2007
Ali Gooya; Hongen Liao; Kiyoshi Matsumiya; Ken Masamune; Takeyoshi Dohi
Evolutionary schemes based on the level set theory are effective tools for medical image segmentation. In this paper, a new variational technique for edge integration is presented. Region statistical measures and orientation information from ramp-like edges, are fused within an energy minimization scheme that is based on a new interpretation of edge concept. A region driven advection term simulating the edge strength effect is directly obtained from this minimization strategy. We have applied our method to several real Magnetic Resonance Angiography data sets and comparison has been made with a state-of-the-art vessel segmentation method. Presented results indicate that using this method a significant improvement is achievable and the method can be an effective tool to extract vessels in MRA intracranial images.
IEEE Journal of Biomedical and Health Informatics | 2018
Avan Suinesiaputra; Pierre Ablin; Xènia Albà; Martino Alessandrini; Jack Allen; Wenjia Bai; Serkan Çimen; Peter Claes; Brett R. Cowan; Jan D'hooge; Nicolas Duchateau; Jan Ehrhardt; Alejandro F. Frangi; Ali Gooya; Vicente Grau; Karim Lekadir; Allen Lu; Anirban Mukhopadhyay; Ilkay Oksuz; Nripesh Parajuli; Xavier Pennec; Marco Pereañez; Catarina Pinto; Paolo Piras; Marc-Michel Rohé; Daniel Rueckert; Dennis Säring; Maxime Sermesant; Kaleem Siddiqi; Mahdi Tabassian
Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes. Which method best characterizes the left ventricular remodeling after MI is an open research question. A better descriptor of remodeling is expected to provide a more accurate evaluation of disease status in MI patients. We therefore designed a challenge to test shape characterization in MI given a set of three-dimensional left ventricular surface points. The training set comprised 100 MI patients, and 100 asymptomatic volunteers (AV). The challenge was initiated in 2015 at the Statistical Atlases and Computational Models of the Heart workshop, in conjunction with the MICCAI conference. The training set with labels was provided to participants, who were asked to submit the likelihood of MI from a different (validation) set of 200 cases (100 AV and 100 MI). Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve were used as the outcome measures. The goals of this challenge were to 1) establish a common dataset for evaluating statistical shape modeling algorithms in MI, and 2) test whether statistical shape modeling provides additional information characterizing MI patients over standard clinical measures. Eleven groups with a wide variety of classification and feature extraction approaches participated in this challenge. All methods achieved excellent classification results with accuracy ranges from 0.83 to 0.98. The areas under the receiver operating characteristic curves were all above 0.90. Four methods showed significantly higher performance than standard clinical measures. The dataset and software for evaluation are available from the Cardiac Atlas Project website.11 http://www.cardiacatlas.org.
Computerized Medical Imaging and Graphics | 2012
Ali Gooya; Hongen Liao; Ichiro Sakuma
Geometric flux maximizing flow (FLUX) is an active contour based method which evolves an initial surface to maximize the flux of a vector field on the surface. For blood vessel segmentation, the vector field is defined as the vectors specified by vascular edge strengths and orientations. Hence, the segmentation performance depends on the quality of the detected edge vector field. In this paper, we propose a new method for level set based segmentation of blood vessels by generalizing the FLUX on a Riemannian manifold (R-FLUX). We consider a 3D scalar image I(x) as a manifold embedded in the 4D space (x, I(x)) and compute the image metric by pullback from the 4D space, whose metric tensor depends on the vessel enhancing diffusion (VED) tensor. This allows us to devise a non-linear filter which both projects and normalizes the original image gradient vectors under the inverse of local VED tensors. The filtered gradient vectors pertaining to the vessels are less sensitive to the local image contrast and more coherent with the local vessel orientation. The method has been applied to both synthetic and real TOF MRA data sets. Comparisons are made with the FLUX and vesselsness response based segmentations, indicating that the R-FLUX outperforms both methods in terms of leakage minimization and thiner vessel delineation.
Siam Journal on Imaging Sciences | 2015
Ali Gooya; Christos Davatzikos; Alejandro F. Frangi
Groupwise registration of point sets is the fundamental step in creating statistical shape models (SSMs). When the number of points on the sets varies across the population, each point set is often regarded as a spatially transformed Gaussian mixture model (GMM) sample, and the registration problem is formulated as the estimation of the underlying GMM from the training samples. Thus, each Gaussian in the mixture specifies a landmark (or model point), which is probabilistically corresponded to a training point. The Gaussian components, transformations, and probabilistic matches are often computed by an expectation-maximization (EM) algorithm. To avoid over- and under-fitting errors, the SSM should be optimized by tuning the required number of components. In this paper, rather than manually setting the number of components before training, we start from a maximal model and prune out the negligible points during the registration by a sparsity criterion. We show that by searching over the continuous space for...