Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali Nayer is active.

Publication


Featured researches published by Ali Nayer.


Journal of Lipid Research | 2011

Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice

Mehmet M. Altintas; Adiba Azad; Behzad Nayer; Gabriel Contreras; Julia Zaias; Christian Faul; Jochen Reiser; Ali Nayer

Obesity is accompanied by adipocyte death and accumulation of macrophages and mast cells in expanding adipose tissues. Considering the differences in biological behavior of fat found in different anatomical locations, we explored the distribution of mast cells, solitary macrophages, and crown-like structures (CLS), the surrogates for dead adipocytes, in subcutaneous and abdominal visceral fat of lean and diet-induced obese C57BL/6 mice. In fat depots of lean mice, mast cells were far less prevalent than solitary macrophages. Subcutaneous fat contained more mast cells, but fewer solitary macrophages and CLS, than visceral fat. Whereas no significant change in mast cell density of subcutaneous fat was observed, obesity was accompanied by a substantial increase in mast cells in visceral fat. CLS became prevalent in visceral fat of obese mice, and the distribution paralleled mast cells. Adipose tissue mast cells contained and released preformed TNF-α, the cytokine implicated in the pathogenesis of obesity-linked insulin resistance. In summary, subcutaneous fat differed from visceral fat by immune cell composition and a lower prevalence of CLS both in lean and obese mice. The increase in mast cells in visceral fat of obese mice suggests their role in the pathogenesis of obesity and insulin resistance.


Science Signaling | 2011

Small Molecule–Mediated Activation of the Integrin CD11b/CD18 Reduces Inflammatory Disease

Dony Maiguel; Mohd Hafeez Faridi; Changli Wei; Yoshihiro Kuwano; Keir M. Balla; Dayami Hernandez; Constantinos J. Barth; Geanncarlo Lugo; Mary E. Donnelly; Ali Nayer; Luis F. Moita; Stephan C. Schürer; David Traver; Phillip Ruiz; Roberto I. Vazquez-Padron; Klaus Ley; Jochen Reiser; Vineet Gupta

Drugs that activate integrins inhibit leukocyte recruitment to sites of inflammation. Stimulated to Stop The recruitment of leukocytes from the blood to sites of injury in tissues is mediated by interactions between integrins on the surface of leukocytes and ligands on endothelial cells that line the blood vessels. In animals, treatment with integrin antagonists reduces the recruitment of leukocytes from the circulation to tissue sites, but this strategy is not effective in humans. Maiguel et al. took the alternative approach of stimulating integrin activation with small-molecule agonists, which increased the extent of leukocyte adhesion to the endothelium and reduced the number of cells that reached sites of tissue damage in a number of animal models, thus reducing inflammation. Together, these data suggest that stimulating, rather than blocking, integrin activation may be an effective therapy to reduce inflammation. The integrin CD11b/CD18 (also known as Mac-1), which is a heterodimer of the αM (CD11b) and β2 (CD18) subunits, is critical for leukocyte adhesion and migration and for immune functions. Blocking integrin-mediated leukocyte adhesion, although beneficial in experimental models, has had limited success in treating inflammatory diseases in humans. Here, we used an alternative strategy of inhibiting leukocyte recruitment by activating CD11b/CD18 with small-molecule agonists, which we term leukadherins. These compounds increased the extent of CD11b/CD18-dependent cell adhesion of transfected cells and of primary human and mouse neutrophils, which resulted in decreased chemotaxis and transendothelial migration. Leukadherins also decreased leukocyte recruitment and reduced arterial narrowing after injury in rats. Moreover, compared to a known integrin antagonist, leukadherins better preserved kidney function in a mouse model of experimental nephritis. Leukadherins inhibited leukocyte recruitment by increasing leukocyte adhesion to the inflamed endothelium, which was reversed with a blocking antibody. Thus, we propose that pharmacological activation of CD11b/CD18 offers an alternative therapeutic approach for inflammatory diseases.


Journal of nephropathology | 2014

Catastrophic antiphospholipid syndrome: a clinical review

Ali Nayer; Luis Ortega

CONTEXT Catastrophic antiphospholipid syndrome (CAPS) is a rare life-threatening autoimmune disease characterized by disseminated intravascular thrombosis resulting in multiorgan failure. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO) and Web of Science have been searched. RESULTS CAPS is due to antiphospholipid antibodies directed against a heterogeneous group of proteins that are associated with phospholipids. These autoantibodies activate endothelial cells, platelets, and immune cells, thereby promoting a proinflammatory and prothrombotic phenotype. Furthermore, antiphospholipid antibodies inhibit anticoagulants, impair fibrinolysis, and activate complements. Although CAPS can affect a variety of organs and tissues, the kidneys, lungs, central nervous system, heart, skin, liver, and gastrointestinal tract are most commonly affected. The systemic inflammatory response syndrome, likely to extensive tissue damage, accompanies CAPS. The most frequent renal manifestations are hypertension, proteinuria, hematuria, and acute renal failure.In the majority of patients with CAPS, a precipitating factor such as infection, surgery, or medication can be identified. Antiphospholipid antibodies such as lupus anticoagulant and antibodies against cardiolipin, β2-glycoprotein I, and prothrombin are serological hallmark of CAPS. Laboratory tests often reveal antinuclear antibodies, thrombocytopenia, and anemia. Despite widespread intravascular coagulation, blood films reveal only a small number of schistocytes. In addition, severe thrombocytopenia is uncommon. CONCLUSIONS Histologically, CAPS is characterized by acute thrombotic microangiopathy. CAPS must be distinguished from other forms of thrombotic microangiopathies such as hemolytic-uremic syndrome, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, and heparin-induced thrombocyt openia. CAPS is associated with high morbidity and mortality. Therefore, an aggressive multidisciplinary treatment strategy is indicated. Anticoagulation, immunosuppression, plasma exchange, intravenous immunoglobulins, and anti-platelet agents, used in various combinations, have resulted in improved patient outcome.


Lipids in Health and Disease | 2011

Apoptosis, mastocytosis, and diminished adipocytokine gene expression accompany reduced epididymal fat mass in long-standing diet-induced obese mice.

Mehmet M. Altintas; Maria A. Rossetti; Behzad Nayer; Alvaro Puig; Patricia Zagallo; Luis Ortega; Kevin Johnson; George McNamara; Jochen Reiser; Armando J. Mendez; Ali Nayer

BackgroundObesity is characterized by increased cell death and inflammatory reactions in the adipose tissue. Here, we explored pathophysiological alterations taking place in the adipose tissue in long-standing obesity. In the epididymal fat of C57BL/6 mice fed a high-fat diet for 20 weeks, the prevalence and distribution of dead adipocytes (crown-like structures), mast cells (toluidine blue, mMCP6), macrophages (F4/80), and apoptotic cells (cleaved caspase-3) were measured. Moreover, gene and/or protein expression of several adipocytokines (leptin, adiponectin, TNF-α, IL-10, IL-6, MCP-1), F4/80, mMCP6, cleaved caspase-3 were determined.ResultsWe observed that the epididymal fat mass was lower in obese than in lean mice. In obese mice, the epididymal fat mass correlated inversely with body weight and liver mass. Dead adipocytes, mast cells, macrophages, and apoptotic cells were abundant in the epididymal fat of obese mice, especially in the rostral vs. caudal zone. Accordingly, mMCP6, F4/80, and cleaved caspase-3 gene and/or protein expression was increased. Conversely, adiponectin, leptin, IL-6, and MCP-1 gene expression levels were lower in the epididymal fat of obese than lean mice. Although TNF-α and IL-10 gene expression was higher in the epididymal fat of obese mice, their expression relative to F4/80 and mMCP6 expression were lower in the heavily infiltrated rostral than caudal zone.ConclusionsThis study demonstrates that in mice with long-standing obesity diminished gene expression of several adipocytokines accompany apoptosis and reduced mass of the epididymal fat. Our findings suggest that this is due to both increased prevalence of dead adipocytes and altered immune cell activity. Differential distribution of metabolically challenged adipocytes is indicative of the presence of biologically diverse zones within the epididymal fat.


Journal of nephropathology | 2014

Dengue-associated kidney disease

Karlo J. Lizarraga; Ali Nayer

CONTEXT A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue is considered a major global health threat by the World Health Organization. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO) and Web of Science have been searched. RESULTS An RNA virus from the genus Flavivirus, dengue virus is transmitted by Aedes aegypti,the yellow fever mosquito. Dengue is asymptomatic in as many as one half of infected individuals. Dengue fever is an acute febrile illness accompanied by constitutional symptoms. Dengue hemorrhagic fever and dengue shock syndrome are the severe forms of dengue infection.Dengue infection has been associated with a variety of renal disorders. Acute renal failure is a potential complication of severe dengue infection and is typically associated with hypotension, rhabdomyolysis, or hemolysis. Acute renal failure complicates severe dengue infection in 2-5% of the cases and carries a high mortality rate. Proteinuria has been detected in as high as 74% of patients with severe dengue infection. Hematuria has been reported in up to 12.5% of patients. Various types of glomerulonephritis have been reported during or shortly after dengue infection in humans and mouse models of dengue infection. Mesangial proliferation and immune complex deposition are the dominant histologic features of dengue-associated glomerulonephritis. On a rare occasion, dengue infection is associated with systemic autoimmune disorders involving the kidneys. CONCLUSIONS In the vast majority of cases, dengue infection and associated renal disorders are self-limited.


Journal of Nephrology | 2017

Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab.

Arif Asif; Ali Nayer; Christian S. Haas

Atypical hemolytic uremic syndrome (aHUS) is a rare, genetic, progressive, life-threatening form of thrombotic microangiopathy (TMA) predominantly caused by dysregulation of the alternative pathway of the complement system. Complement-amplifying conditions (CACs), including pregnancy complications [preeclampsia, HELLP (hemolysis, elevated liver enzymes, low platelet count) syndrome], malignant hypertension, autoimmune diseases, transplantation, and others, are associated with the onset of TMA in up to 69 % of cases of aHUS. CACs activate the alternative pathway of complement and may be comorbid with aHUS or may unmask a previously undiagnosed case. In this review, three case reports are presented illustrating the onset and diagnosis of aHUS in the setting of different CACs (pregnancy complications, malignant hypertension, renal transplantation). The report also reviews the evidence for a variety of CACs, including those mentioned above as well as infections and drug-induced TMA, and the overlap with aHUS. Finally, we introduce an algorithm for diagnosis and treatment of aHUS in the setting of CACs. If TMA persists despite initial management for the specific CAC, aHUS should be considered. The terminal complement inhibitor eculizumab should be initiated for all patients with confirmed diagnosis of aHUS, with or without a comorbid CAC.


American Journal of Therapeutics | 2016

Atypical Hemolytic-Uremic Syndrome: A Clinical Review.

Ali Nayer; Arif Asif

Atypical hemolytic–uremic syndrome (HUS) is a rare life-threatening disorder characterized by microangiopathic hemolytic anemia, thrombocytopenia, and ischemic injury to organs, especially the kidneys. Microvascular injury and thrombosis are the dominant histologic findings. Complement activation through the alternative pathway plays a critical role in the pathogenesis of atypical HUS. Genetic abnormalities involving complement regulatory proteins and complement components form the molecular basis for complement activation. Endothelial cell dysfunction, probably because of the effects of complement activation, is an intermediate stage in the pathophysiologic cascade. Atypical HUS has a grave prognosis. Although mortality approaches 25% during the acute phase, end-stage renal disease develops in nearly half of patients within a year. Atypical HUS has a high recurrence rate after renal transplantation, and recurrent disease often leads to graft loss. Plasma therapy in the form of plasma exchange or infusion has remained the standard treatment for atypical HUS. However, many patients do not respond to plasma therapy and some require prolonged treatment. Approved by the Food and Drug Administration in the treatment of atypical HUS, eculizumab is a humanized monoclonal antibody that blocks cleavage of complement C5 into biologically active mediators of inflammation and cytolysis. Although case reports have shown the efficacy of eculizumab, randomized clinical trials are lacking. Therapeutic strategies targeting endothelial cells have demonstrated promising results in experimental settings. Therefore, inhibitors of angiotensin-converting enzyme, HMG-CoA reductase, and xanthine oxidase as well as antioxidants, such as ascorbic acid, may have salutary effects in patients with atypical HUS.


Current Opinion in Lipidology | 2014

Dyslipidemia, malnutrition, inflammation, cardiovascular disease and mortality in chronic kidney disease

Vasil Peev; Ali Nayer; Gabriel Contreras

Purpose of review Dyslipidemia, malnutrition and inflammation are common in patients with chronic kidney disease (CKD) and are strongly associated with cardiovascular disease (CVD) and increased mortality. The epidemiology of dyslipidemia and its interactions with malnutrition and inflammation in CKD patients have been the subject of much interest in the past decade. Recent clinical trials have explored the effects of statins on CVD specifically in CKD patients. Recent findings Whereas the risk relationship between total cholesterol level and CVD morbidity and mortality is direct, strong and progressive in CKD patients without malnutrition and inflammation, it is inconsistent and often paradoxical in those with malnutrition and inflammation. Accumulating evidence demonstrates that statins reduce significantly the risk of CVD in CKD patients before the initiation of dialysis. However, the beneficial effect of statins in CKD patients on dialysis is uncertain. In CKD patients on dialysis, malnutrition and inflammation pose a higher risk for CVD than dyslipidemia. Summary In CKD patients, the risk of CVD associated to dyslipidemia is complex and is modified by malnutrition and inflammation.


Journal of The American Society of Hypertension | 2016

The endothelium as the common denominator in malignant hypertension and thrombotic microangiopathy

Roy O. Mathew; Ali Nayer; Arif Asif

The endothelium plays a pivotal role in vascular biology. The endothelium is the primary site of injury in thrombotic microangiopathies including malignant hypertension. Endothelial injury in thrombotic microangiopathies is the result of increased shear stress, toxins, and/or dysregulated complement activation. Endothelial injury can lead to microvascular thrombosis resulting in ischemia and organ dysfunction, the clinical hallmarks of thrombotic microangiopathies. Currently, available therapies target the underlying mechanisms that lead to endothelial injury in these conditions. Ongoing investigations aim at identifying drugs that protect the endothelium.


Lipids in Health and Disease | 2012

Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice

Mehmet M. Altintas; Behzad Nayer; Eric Walford; Kevin Johnson; Gabriel Gaidosh; Jochen Reiser; Nestor de la Cruz-Muñoz; Luis Ortega; Ali Nayer

BackgroundMast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver) and lymphatic (abdominal lymph nodes, spleen, and thymus) organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α), a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining.Resultsob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was noted between ob/ob and control mice.ConclusionsThis study demonstrates that leptin deficiency-induced obesity is accompanied by alterations in the density of mast cells in abdominal fat depots. The divergent distribution of mast cells in subcutaneous versus visceral fat might partially account for their differential biological behavior. Mast cells might also play a role in adaptive immune response occurring in regional lymph nodes in obesity.

Collaboration


Dive into the Ali Nayer's collaboration.

Top Co-Authors

Avatar

Arif Asif

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sahar Ajabshir

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge