Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali Shakouri is active.

Publication


Featured researches published by Ali Shakouri.


Advanced Materials | 2010

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features

Christopher J. Vineis; Ali Shakouri; Arun Majumdar; Mercouri G. Kanatzidis

The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data--especially related to materials--have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.


Applied Physics Letters | 1997

HETEROSTRUCTURE INTEGRATED THERMIONIC COOLERS

Ali Shakouri; John E. Bowers

Thermionic emission in heterostructures is proposed for integrated cooling of high power electronic and optoelectronic devices. This evaporative cooling is achieved by selective emission of hot electrons over a barrier layer from the cathode to the anode. It is shown that with available high electron mobility and low thermal conductivity materials, and with optimized conduction band offsets in heterostructures, single-stage room temperature cooling of up to 20°–40° over thicknesses of the order of microns is possible.


Applied Physics Letters | 2002

Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices

Scott T. Huxtable; Alexis R. Abramson; Chang Lin Tien; Arun Majumdar; Chris LaBounty; Xiaofeng Fan; Gehong Zeng; John E. Bowers; Ali Shakouri; E. T. Croke

The cross-plane thermal conductivity of four Si/Si0.7Ge0.3 superlattices and three Si0.84Ge0.16/Si0.76Ge0.24 superlattices, with periods ranging from 45 to 300 and from 100 to 200 A, respectively, were measured over a temperature range of 50 to 320 K. For the Si/Si0.7Ge0.3 superlattices, the thermal conductivity was found to decrease with a decrease in period thickness and, at a period thickness of 45 A, it approached the alloy limit. For the Si0.84Ge0.16/Si0.76Ge0.24 samples, no dependence on period thickness was found and all the data collapsed to the alloy value, indicating the dominance of alloy scattering. This difference in thermal conductivity behavior between the two superlattices was attributed to interfacial acoustic impedance mismatch, which is much larger for Si/Si0.7Ge0.3 than for Si0.84Ge0.16/Si0.76Ge0.24. The thermal conductivity increased slightly up to about 200 K, but was relatively independent of temperature from 200 to 320 K.


Applied Physics Letters | 2001

SiGeC/Si superlattice microcoolers

Xiaofeng Fan; Gehong Zeng; Chris LaBounty; John E. Bowers; E. T. Croke; Channing C. Ahn; Scott T. Huxtable; Arun Majumdar; Ali Shakouri

Monolithically integrated active cooling is an attractive way for thermal management and temperature stabilization of microelectronic and optoelectronic devices. SiGeC can be lattice matched to Si and is a promising material for integrated coolers. SiGeC/Si superlattice structures were grown on Si substrates by molecular beam epitaxy. Thermal conductivity was measured by the 3omega method. SiGeC/Si superlattice microcoolers with dimensions as small as 40×40 µm^2 were fabricated and characterized. Cooling by as much as 2.8 and 6.9 K was measured at 25 °C and 100 °C, respectively, corresponding to maximum spot cooling power densities on the order of 1000 W/cm^2.


Journal of Heat Transfer-transactions of The Asme | 2002

Heat transfer in nanostructures for solid-state energy conversion

Gang Chen; Ali Shakouri

Solid-state energy conversion technologies such as thermoelectric and thermionic refrigeration and power generation require materials with low thermal conductivity but good electrical conductivity and Seebeck coefficient, which are difficult to realize in bulk semi-conductors. Nanostructures such as superlattices, quantum wires, and quantum dots provide alternative approaches to improve the solid-state energy conversion efficiency through size and interface effects on the electron and phonon transport. In this review, we discuss recent research and progress using nanostructures for solid-state energy converxion. The emphasis is placed on fundamental issues that distinguish energy transport and conversion between nanoscale and macroscale, as well as heat transfer issues related to device development and property characterization.


IEEE Photonics Technology Letters | 2002

Wide tunable double ring resonator coupled lasers

Bin Liu; Ali Shakouri; John E. Bowers

A double ring resonator coupled laser (DR-RCL) is proposed and analyzed in this letter. Benefiting from the uniform peak transmission, narrow bandwidth and other superior characteristics of traveling wave supported high-Q resonators, DR-RCLs offers many promising advantages over the conventional tunable lasers, including ultra wide wavelength tuning range, high side mode suppression ratio, uniform threshold and efficiency, narrow linewidth, low frequency chirp, and simple fabrication. A DR-RCL with a moderate optical loss /spl sim/10 dB/cm in the ring resonators can achieve a wavelength tuning enhancement of /spl sim/50. With such a large tuning leverage, DR-RCLs could utilize the electrooptic effects to achieve ultrafast tuning speed with a wide tuning range covering the material gain bandwidth.


Proceedings of the IEEE | 2006

Nanoscale Thermal Transport and Microrefrigerators on a Chip

Ali Shakouri

In this paper we review recent advances in nanoscale thermal and thermoelectric transport with an emphasis on the impact on integrated circuit (IC) thermal management. We will first review thermal conductivity of low-dimensional solids. Experimental results have shown that phonon surface and interface scattering can lower thermal conductivity of silicon thin films and nanowires in the sub-100-nm range by a factor of two to five. Carbon nanotubes are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal conductivities of thousands of W/mK and high mechanical strength. We then concentrate on the fundamental interaction between heat and electricity, i.e., thermoelectric effects, and how nanostructures are used to modify this interaction. We will review recent experimental and theoretical results on superlattice and quantum dot thermoelectrics as well as solid-state thermionic thin-film devices with embedded metallic nanoparticles. Heat and current spreading in the three-dimensional electrode configuration, allow removal of high-power hot spots in IC chips. Several III-V and silicon heterostructure integrated thermionic (HIT) microcoolers have been fabricated and characterized. They have achieved cooling up to 7 degC at 100 degC ambient temperature with devices on the order of 50 mum in diameter. The cooling power density was also characterized using integrated thin-film heaters; values ranging from 100 to 680 W/cm2 were measured. Response time on the order of 20-40 ms has been demonstrated. Calculations show that with an improvement in material properties, hot spots tens of micrometers in diameter with heat fluxes in excess of 1000 W/cm2 could be cooled down by 20 degC-30 degC. Finally we will review some of the more exotic techniques such as thermotunneling and analyze their potential application to chip cooling


Journal of Materials Chemistry C | 2015

Flexible thermoelectric materials and device optimization for wearable energy harvesting

Je-Hyeong Bahk; Haiyu Fang; Kazuaki Yazawa; Ali Shakouri

In this paper, we review recent advances in the development of flexible thermoelectric materials and devices for wearable human body-heat energy harvesting applications. We identify various emerging applications such as specialized medical sensors where wearable thermoelectric generators can have advantages over other energy sources. To meet the performance requirements for these applications, we provide detailed design guidelines regarding the properties of the material, device dimensions, and gap fillers by performing realistic device simulations with important parasitic losses taken into account. For this, we review recently emerging flexible thermoelectric materials suited for wearable applications, such as polymer-based materials and screen-printed paste-type inorganic materials. A few examples among these materials are selected for thermoelectric device simulations in order to find optimal design parameters for wearable applications. Finally we discuss the feasibility of scalable and cost-effective manufacturing of thermoelectric energy harvesting devices with desired dimensions.


Applied Physics Letters | 2005

Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles

J. M. Zide; Dmitri O. Klenov; Susanne Stemmer; A. C. Gossard; Gehong Zeng; John E. Bowers; Daryoosh Vashaee; Ali Shakouri

We have grown composite epitaxial materials that consist of semimetallic ErAs nanoparticles embedded in a semiconducting In0.53Ga0.47As matrix both as superlattices and randomly distributed throughout the matrix. The presence of these particles increases the free electron concentration in the material while providing scattering centers for phonons. We measure electron concentration, mobility, and Seebeck coefficient of these materials and discuss their potential for use in thermoelectric power generators.We have grown composite epitaxial materials that consist of semimetallic ErAs nanoparticles embedded in a semiconducting In0.53Ga0.47As matrix both as superlattices and randomly distributed throughout the matrix. The presence of these particles increases the free electron concentration in the material while providing scattering centers for phonons. We measure electron concentration, mobility, and Seebeck coefficient of these materials and discuss their potential for use in thermoelectric power generators.


Journal of Applied Physics | 2004

Electronic and thermoelectric transport in semiconductor and metallic superlattices

Daryoosh Vashaee; Ali Shakouri

A detailed theory of nonisothermal electron transport perpendicular to multilayer superlattice structures is presented. The current–voltage (I–V) characteristics and the cooling power density are calculated using Fermi–Dirac statistics, density-of-states for a finite quantum well and the quantum mechanical reflection coefficient. The resulting equations are valid in a wide range of temperatures and electric fields. It is shown that conservation of lateral momentum plays an important role in the device characteristics. If the lateral momentum of the hot electrons is conserved in the thermionic emission process, only carriers with sufficiently large kinetic energy perpendicular to the barrier can pass over it and cool the emitter junction. However, if there is no conservation of lateral momentum, the number of electrons participating in a thermionic emission will increase. This has a significant effect on the I–V measurements as well as the cooling characteristics. Theoretical calculations are compared with...

Collaboration


Dive into the Ali Shakouri's collaboration.

Top Co-Authors

Avatar

John E. Bowers

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhixi Bian

University of California

View shared research outputs
Top Co-Authors

Avatar

Gehong Zeng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Gossard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arun Majumdar

University of California

View shared research outputs
Top Co-Authors

Avatar

Dustin Kendig

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge