Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali Winters is active.

Publication


Featured researches published by Ali Winters.


PLOS ONE | 2012

Neuroprotective Actions of Methylene Blue and Its Derivatives

Ethan Poteet; Ali Winters; Liang-Jun Yan; Kyle Shufelt; Kayla N. Green; James W. Simpkins; Yi Wen; Shao-Hua Yang

Methylene blue (MB), the first lead chemical structure of phenothiazine and other derivatives, is commonly used in diagnostic procedures and as a treatment for methemoglobinemia. We have previously demonstrated that MB could function as an alternative mitochondrial electron transfer carrier, enhance cellular oxygen consumption, and provide protection in vitro and in rodent models of Parkinson’s disease and stroke. In the present study, we investigated the structure-activity relationships of MB in vitro using MB and six structurally related compounds. MB reduces mitochondrial superoxide production via alternative electron transfer that bypasses mitochondrial complexes I-III. MB mitigates reactive free radical production and provides neuroprotection in HT-22 cells against glutamate, IAA and rotenone toxicity. Distinctly, MB provides no protection against direct oxidative stress induced by glucose oxidase. Substitution of a side chain at MB’s 10-nitrogen rendered a 1000-fold reduction of the protective potency against glutamate neurototoxicity. Compounds without side chains at positions 3 and 7, chlorophenothiazine and phenothiazine, have distinct redox potentials compared to MB and are incapable of enhancing mitochondrial electron transfer, while obtaining direct antioxidant actions against glutamate, IAA, and rotenone insults. Chlorophenothiazine exhibited direct antioxidant actions in mitochondria lysate assay compared to MB, which required reduction by NADH and mitochondria. MB increased complex IV expression and activity, while 2-chlorphenothiazine had no effect. Our study indicated that MB could attenuate superoxide production by functioning as an alternative mitochondrial electron transfer carrier and as a regenerable anti-oxidant in mitochondria.


Journal of Biological Chemistry | 2011

Reactive Oxygen Species-mediated TRPC6 Protein Activation in Vascular Myocytes, a Mechanism for Vasoconstrictor-regulated Vascular Tone

Yanfeng Ding; Ali Winters; Min Ding; Sarabeth Graham; Irina Akopova; Shmuel Muallem; Yanxia Wang; Jeong Hee Hong; Zygmunt Gryczynski; Shao-Hua Yang; Lutz Birnbaumer; Rong Ma

Both TRPC6 and reactive oxygen species (ROS) play an important role in regulating vascular function. However, their interplay has not been explored. The present study examined whether activation of TRPC6 in vascular smooth muscle cells (VSMCs) by ROS was a physiological mechanism for regulating vascular tone by vasoconstrictors. In A7r5 cells, arginine vasopressin (AVP) evoked a striking Ca2+ entry response that was significantly attenuated by either knocking down TRPC6 using siRNA or inhibition of NADPH oxidases with apocynin or diphenyleneiodonium. Inhibition of TRPC6 or ROS production also decreased AVP-stimulated membrane currents. In primary cultured aortic VSMCs, catalase and diphenyleneiodonium significantly suppressed AVP- and angiotensin II-induced whole cell currents and Ca2+ entry, respectively. In freshly isolated and endothelium-denuded thoracic aortas, hyperforin (an activator of TRPC6), but not its vehicle, induced dose- and time-dependent constriction in TRPC6 wide type (WT) mice. This response was not observed in TRPC6 knock-out (KO) mice. Consistent with the ex vivo study, hyperforin stimulated a robust Ca2+ entry in the aortic VSMCs from WT mice but not from KO mice. Phenylephrine induced a dose-dependent contraction of WT aortic segments, and this response was inhibited by catalase. Moreover, H2O2 itself evoked Ca2+ influx and inward currents in A7r5 cells, and these responses were significantly attenuated by either inhibition of TRPC6 or blocking vesicle trafficking. H2O2 also induced inward currents in primary VSMCs from WT but not from TRPC6 KO mice. Additionally, H2O2 stimulated a dose-dependent constriction of the aortas from WT mice but not from the vessels of KO mice. Furthermore, TIRFM showed that H2O2 triggered membrane trafficking of TRPC6 in A7r5 cells. These results suggest a new signaling pathway of ROS-TRPC6 in controlling vessel contraction by vasoconstrictors.


European Journal of Immunology | 2015

Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10

Luokun Xie; Gourav Roy Choudhury; Ali Winters; Shao-Hua Yang; Kunlin Jin

Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T‐cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4+ T‐cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg‐cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS‐induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL‐2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg‐cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state.


Journal of Biological Chemistry | 2014

Cancer-associated Isocitrate Dehydrogenase 1 (IDH1) R132H Mutation and d-2-Hydroxyglutarate Stimulate Glutamine Metabolism under Hypoxia

Zachary J. Reitman; Christopher G. Duncan; Ethan Poteet; Ali Winters; Liang-Jun Yan; David M. Gooden; Ivan Spasojevic; Laszlo G. Boros; Shao Hua Yang; Hai Yan

Background: Somatic IDH1 mutations are common in several types of cancer. Results: IDH1 mutation increases the proportion of palmitate derived from [13C]glutamine under hypoxic conditions. Conclusion: IDH1 mutation can stimulate tumor cell reductive glutamine metabolism. Significance: IDH1 mutation may cause the unique glutamine-dependent metabolic phenotype observed in tumors. Mutations in the cytosolic NADP+-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted 13C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers.


Journal of Biological Chemistry | 2013

Reversing the Warburg Effect as a Treatment for Glioblastoma

Ethan Poteet; Gourav Roy Choudhury; Ali Winters; Wenjun Li; Myoung-Gwi Ryou; Ran Liu; Lin Tang; Anuja Ghorpade; Yi Wen; Fang Yuan; Stephen T. Keir; Hai Yan; Darell D. Bigner; James W. Simpkins; Shaohua Yang

Background: Glioblastoma is the most prevalent brain tumor with the poorest prognosis. Results: Methylene blue enhances oxygen consumption, reduces lactate production, and inhibits glioblastoma cell proliferation. Conclusion: Reversal of the Warburg effect could inhibit glioblastoma cell proliferation. Significance: Modulation of cancer cell bioenergetics and reversal of Warburg effect might provide a novel therapy for glioblastoma. Glioblastoma multiforme (GBM), like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect. Here, we documented that methylene blue (MB) reverses the Warburg effect evidenced by the increasing of oxygen consumption and reduction of lactate production in GBM cell lines. MB decreases GBM cell proliferation and halts the cell cycle in S phase. Through activation of AMP-activated protein kinase, MB inactivates downstream acetyl-CoA carboxylase and decreases cyclin expression. Structure-activity relationship analysis demonstrated that toluidine blue O, an MB derivative with similar bioenergetic actions, exerts similar action in GBM cell proliferation. In contrast, two other MB derivatives, 2-chlorophenothiazine and promethazine, exert no effect on cellular bioenergetics and do not inhibit GBM cell proliferation. MB inhibits cell proliferation in both temozolomide-sensitive and -insensitive GBM cell lines. In a human GBM xenograft model, a single daily dosage of MB does not activate AMP-activated protein kinase signaling, and no tumor regression was observed. In summary, the current study provides the first in vitro proof of concept that reversal of Warburg effect might be a novel therapy for GBM.


Neuroscience | 2015

Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress.

Myoung-Gwi Ryou; Gourav Roy Choudhury; Wenjun Li; Ali Winters; Fang Yuan; Ran Liu; Shao-Hua Yang

UNLABELLED Brain ischemia and reperfusion (I/R) injury occurs in various pathological conditions, but there is no effective treatment currently available in clinical practice. Methylene blue (MB) is a century-old drug with a newly discovered protective function in the ischemic stroke model. In the current investigation we studied the MB-induced neuroprotective mechanism focusing on stabilization and activation of hypoxia-inducible factor-1α (HIF-1α) in an in vitro oxygen and glucose deprivation (OGD)-reoxygenation model. METHODS HT22 cells were exposed to OGD (0.1% O2, 6h) and reoxygenation (21% O2, 24h). Cell viability was determined with the calcein AM assay. The dynamic change of intracellular O2 concentration was monitored by fluorescence lifetime imaging microscopy (FLTIM). Glucose uptake was quantified using the 2-[N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Amino]-2-Deoxy-d-Glucose (2-NBDG) assay. ATP concentration and glycolytic enzyme activity were examined by spectrophotometry. Protein content changes were measured by immunoblot: HIF-1α, prolyl hydroxylase 2 (PHD2), erythropoietin (EPO), Akt, mTOR, and PIP5K. The contribution of HIF-1α activation in the MB-induced neuroprotective mechanism was confirmed by blocking HIF-1α activation with 2-methoxyestradiol-2 (2-MeOE2) and by transiently transfecting constitutively active HIF-1α. RESULTS MB increases cell viability by about 50% vs. OGD control. Compared to the corresponding control, MB increases intracellular O2 concentration and glucose uptake as well as the activities of hexokinase and G-6-PDH, and ATP concentration. MB activates the EPO signaling pathway with a corresponding increase in HIF-1α. Phosphorylation of Akt was significantly increased with MB treatment followed by activation of the mTOR pathway. Importantly, we observed, MB increased nuclear translocation of HIF-1α vs. control (about three folds), which was shown by a ratio of nuclear:cytoplasmic HIF-1α protein content. CONCLUSION We conclude that MB protects the hippocampus-derived neuronal cells against OGD-reoxygenation injury by enhancing energy metabolism and increasing HIF-1α protein content accompanied by an activation of the EPO signaling pathway.


Frontiers in Cellular Neuroscience | 2013

Methylene blue induces macroautophagy through 5' adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation.

Luokun Xie; Wenjun Li; Ali Winters; Fang Yuan; Kunlin Jin; Shao-Hua Yang

Methylene blue has been shown to be neuroprotective in multiple experimental neurodegenerative disease models. However, the mechanisms underlying the neuroprotective effects have not been fully elucidated. Previous studies have shown that macroautophagy has multiple beneficial roles for maintaining normal cellular homeostasis and that induction of macroautophagy after myocardial ischemia is protective. In the present study we demonstrated that methylene blue could protect HT22 hippocampal cell death induced by serum deprivation, companied by induction of macroautophagy. We also found that methylene blue-mediated neuroprotection was abolished by macroautophagy inhibition. Interestingly, 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling, but not inhibition of mammalian target of rapamycin signaling, was activated at 12 and 24 h after methylene blue treatment in a dose-dependent manner. Methylene blue-induced macroautophagy was blocked by AMPK inhibitor. Consistent with in vitro data, macroautophagy was induced in the cortex and hippocampus of mouse brains treated with methylene blue. Our findings suggest that methylene blue-induced neuroprotection is mediated, at least in part, by macroautophagy though activation of AMPK signaling.


Kidney International | 2013

The synthetic triterpenoid, RTA 405, increases the glomerular filtration rate and reduces angiotensin II–induced contraction of glomerular mesangial cells

Yanfeng Ding; Rhesa D. Stidham; Ron Bumeister; Isaac Trevino; Ali Winters; Marc Sprouse; Min Ding; Deborah A. Ferguson; Colin J. Meyer; W. Christian Wigley; Rong Ma

Bardoxolone methyl, a synthetic triterpenoid, improves the estimated glomerular filtration rate (GFR) in patients with chronic kidney disease and type 2 diabetes. Since the contractile activity of mesangial cells may influence glomerular filtration, we evaluated the effect of the synthetic triterpenoid RTA 405, with structural similarity to bardoxolone methyl, on GFR in rats and on mesangial cell contractility in freshly isolated glomeruli. In rats, RTA 405 increased basal GFR, assessed by inulin clearance, and attenuated the angiotensin II-induced decline in GFR. RTA 405 increased the filtration fraction, but did not affect arterial blood pressure or renal plasma flow. Glomeruli from RTA 405-treated rats were resistant to angiotensin II-induced volume reduction ex vivo. In cultured mesangial cells, angiotensin II-stimulated contraction was attenuated by RTA 405, in a dose- and time-dependent fashion. Further, Nrf2-targeted gene transcription (regulates antioxidant, anti-inflammatory, and cytoprotective responses) in mesangial cells was associated with decreased basal and reduced angiotensin II-stimulated hydrogen peroxide and calcium ion levels. These mechanisms contribute to the GFR increase that occurs following treatment with RTA 405 in rats and may underlie the effect of bardoxolone methyl on the estimated GFR in patients.


Brain Research | 2013

Involvement of estrogen receptor β5 in the progression of glioma.

Wenjun Li; Ali Winters; Ethan Poteet; Myoung Gwi Ryou; Song Lin; Shuyu Hao; Zhen Wu; Fang Yuan; Kimmo J. Hatanpaa; James W. Simpkins; Shao Hua Yang

Emerging evidence suggests a decline of ERβ expression in various peripheral cancers. ERβ has been proposed as a cancer brake that inhibits tumor proliferation. In the current study, we have identified ERβ5 as the predominant isoform of ERβ in human glioma and its expression was significantly increased in human glioma as compared with non-neoplastic brain tissue. Hypoxia and activation of hypoxia inducible factor (HIF) increased ERβ transcription in U87 cells, suggesting elevated ERβ expression in glioma might be induced by the hypoxic stress in the tumor. Over-expression of either ERβ1 or ERβ5 increased PTEN expression and inhibited activation of the PI3K/AKT/mTOR pathway. In addition, ERβ5 inhibited the MAPK/ERK pathway. In U87 cells, ERβ1 and ERβ5 inhibit cell proliferation and reduced cells in the S+G2/M phase. Our findings suggest hypoxia induced ERβ5 expression in glioma as a self-protective mechanism against tumor proliferation and that ERβ5 might serve as a therapeutic target for the treatment of glioma.


PLOS ONE | 2015

Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

Gourav Roy Choudhury; Ali Winters; Ryan Rich; Myoung-Gwi Ryou; Zygmunt Gryczynski; Fang Yuan; Shao-Hua Yang; Ran Liu

Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.

Collaboration


Dive into the Ali Winters's collaboration.

Top Co-Authors

Avatar

Shao-Hua Yang

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Ran Liu

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Wenjun Li

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Myoung-Gwi Ryou

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Gourav Roy Choudhury

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Fang Yuan

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Ethan Poteet

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Luokun Xie

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Shaohua Yang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge