Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alia Benali is active.

Publication


Featured researches published by Alia Benali.


The Journal of Neuroscience | 2011

Theta-Burst Transcranial Magnetic Stimulation Alters Cortical Inhibition

Alia Benali; Jörn Trippe; Elke Weiler; Annika Mix; Elisabeth Petrasch-Parwez; Wolfgang Girzalsky; Ulf T. Eysel; Ralf Erdmann; Klaus Funke

Human cortical excitability can be modified by repetitive transcranial magnetic stimulation (rTMS), but the cellular mechanisms are largely unknown. Here, we show that the pattern of delivery of theta-burst stimulation (TBS) (continuous versus intermittent) differently modifies electric activity and protein expression in the rat neocortex. Intermittent TBS (iTBS), but not continuous TBS (cTBS), enhanced spontaneous neuronal firing and EEG gamma band power. Sensory evoked cortical inhibition increased only after iTBS, although both TBS protocols increased the first sensory response arising from the resting cortical state. Changes in the cortical expression of the calcium-binding proteins parvalbumin (PV) and calbindin D-28k (CB) indicate that changes in spontaneous and evoked cortical activity following rTMS are in part related to altered activity of inhibitory systems. By reducing PV expression in the fast-spiking interneurons, iTBS primarily affected the inhibitory control of pyramidal cell output activity, while cTBS, by reducing CB expression, more likely affected the dendritic integration of synaptic inputs controlled by other classes of inhibitory interneurons. Calretinin, the third major calcium-binding protein expressed by another class of interneurons was not affected at all. We conclude that different patterns of TBS modulate the activity of inhibitory cell classes differently, probably depending on the synaptic connectivity and the preferred discharge pattern of these inhibitory neurons.


The Journal of Physiology | 2011

Modulation of cortical inhibition by rTMS – findings obtained from animal models

Klaus Funke; Alia Benali

Abstract  Transcranial magnetic stimulation (TMS) has become a popular method to non‐invasively stimulate the human brain. The opportunity to modify cortical excitability with repetitive stimulation (rTMS) has especially gained interest for its therapeutic potential. However, details of the cellular mechanisms of the effects of rTMS are scarce. Currently favoured are long‐term changes in the efficiency of excitatory synaptic transmission, with low‐frequency rTMS depressing it, but high‐frequency rTMS augmenting. Only recently has modulation of cortical inhibition been considered as an alternative way to explain lasting changes in cortical excitability induced by rTMS. Adequate animal models help to highlight stimulation‐induced changes in cellular processes which are not assessable in human rTMS studies. In this review article, we summarize findings obtained with our rat models which indicate that distinct inhibitory cell classes, like the fast‐spiking cells characterized by parvalbumin expression, are most sensitive to certain stimulation protocols, e.g. intermittent theta burst stimulation. We discuss how our findings can support the recently suggested models of gating and homeostatic plasticity as possible mechanisms of rTMS‐induced changes in cortical excitability.


Acta Neuropathologica | 2010

Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia.

Martin Brüne; Andreas Schöbel; Ramona Karau; Alia Benali; Pedro M. Faustmann; Georg Juckel; Elisabeth Petrasch-Parwez

The anterior cingulate cortex (ACC) represents a phylogenetically ancient region of the mammalian brain that has undergone recent adaptive changes in humans. It contains a large spindle-shaped cell type, referred to as von Economo neuron (VEN) that has been shown to be involved in the pathophysiology of various neuropsychiatric disorders. Schizophrenia is a group of disorders that is, in part, characterised by a disruption of neuronal migration in early ontogeny and presumably secondary degeneration after the first psychotic episode in some patients. Accordingly, we tested the hypothesis that the density of VENs is reduced in a neurodevelopmental subtype of schizophrenia, which we defined by an early onset of the disorder. The density of VENs was estimated in layer Vb of Brodmann’s area 24 in 20 subjects diagnosed with schizophrenia. The results were compared with 19 specimens from patients with bipolar disorder as a clinical control and 22 non-psychiatric samples. The density of VENs did not differ between the three groups. However, the VEN density in the right ACC correlated with the age at onset, and inversely with the duration of the illness in schizophrenia, but not in bipolar disorder. Thus, patients with early onset schizophrenia (and longer duration of illness) had a reduced VEN density. Age, sex, postmortem interval, brain weight, and cortical thickness had no significant impact on the results. These findings suggest that VENs in the ACC are involved in neurodevelopmental and perhaps neurodegenerative processes specific to schizophrenia.


European Journal of Neuroscience | 2010

Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently

Annika Mix; Alia Benali; Ulf T. Eysel; Klaus Funke

Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus‐frequency‐dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium‐binding protein parvalbumin (PV) and of the 67‐kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65‐kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast‐spiking interneurons, and re‐established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning‐induced and background activity.


The Journal of Neuroscience | 2008

Excitation and Inhibition Jointly Regulate Cortical Reorganization in Adult Rats

Alia Benali; Elke Weiler; Youssef Benali; Hubert R. Dinse; Ulf T. Eysel

The primary somatosensory cortex (SI) retains its capability for cortical reorganization after injury or differential use into adulthood. The plastic response of SI cells to peripheral stimulation is characterized by extension of cortical representations accompanied by changes of the receptive field size of neurons. We used intracortical microstimulation that is known to enforce local, intracortical synchronous activity, to induce cortical reorganization and applied immunohistochemical methods in the same individual animals to investigate how plasticity in the cortical topographic maps is linked to changes in the spatial layout of the inhibitory and excitatory neurotransmitter systems. The results reveal a differential spatiotemporal pattern of upregulation and downregulation of specific factors for an excitatory (glutamatergic) and an inhibitory (GABAergic) system, associated with changes of receptive field size and reorganization of the somatotopic map in the rat SI. Predominantly local mechanisms are the specific reduction of the calcium-binding protein parvalbumin in inhibitory neurons and the low expression of the activity marker c-Fos. Reorganization in the hindpaw representation and in the adjacent SI cortical areas (motor cortex and parietal cortex) is accompanied by a major increase of the excitatory transmitter glutamate and c-Fos. The spatial extent of the reorganization appears to be limited by an increase of glutamic acid decarboxylase and the inhibitory transmitter GABA. The local and medium-range net effects are excitatory and can facilitate receptive field enlargements and cortical map expansion. The longer-range increase of inhibition appears suited to limit these effects and to prevent neurons from pathological hyperexcitability.


Brain Stimulation | 2013

Dose-dependence of changes in cortical protein expression induced with repeated transcranial magnetic theta-burst stimulation in the rat

Lukas J. Volz; Alia Benali; Annika Mix; Ute Neubacher; Klaus Funke

BACKGROUND Theta Burst stimulation (TBS) applied via transcranial magnetic stimulation (TMS) effectively modulates human neocortical excitability but repeated applications of the same TBS protocol at short intervals may be not simply accumulative. OBJECTIVE Our aim was to investigate the impact of multiple blocks of either intermittent (iTBS) or continuous TBS (cTBS) on the expression of neuronal activity marker proteins in rat cortex. METHODS Up to four iTBS- or cTBS-blocks of 600 stimuli were applied to urethane-anesthetized rats followed by immunohistochemical and Western blot analyses. RESULTS The effects of iTBS and cTBS were similar but slightly differed with regard to the number of stimuli applied. The expression of the 65-kD isoform of glutamic acid decarboxylase (GAD65) increased with each stimulation block, while that of the 67-kD isoform (GAD67), and that of the calcium-binding proteins (CaBP) Parvalbumin (PV) and Calbindin (CB) and that of the immediate early gene c-Fos progressively decreased. Both TBS protocols increased the expression of the vesicular glutamate transporter 1 (VGLUT1) with 1200-1800 stimuli but then decreased them after the 4th block. CONCLUSION Our findings indicate that repeated TBS elicits no simple accumulative dose-dependent effect for all activity-markers but distinct profiles with threshold characteristics and a waxing-and-waning effect especially for the markers of inhibitory activity CB and GAD67. Interestingly, somatic activity markers, such as c-Fos for mainly excitatory and GAD67, CB and PV for inhibitory neurons, decreased with repeated stimulation while synaptic activity markers mainly increased which could be a result of the artificial stimulation of axons.


Brain Stimulation | 2014

Modulation of Inhibitory Activity Markers by Intermittent Theta-burst Stimulation in Rat Cortex is NMDA-receptor Dependent

Adnan Labedi; Alia Benali; Annika Mix; Ute Neubacher; Klaus Funke

BACKGROUND Intermittent theta-burst stimulation (iTBS) applied via transcranial magnetic stimulation has been shown to increase cortical excitability in humans. In the rat brain it strongly reduced the number of neurons expressing the 67-kD isoform of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD67) and those expressing the calcium-binding proteins parvalbumin (PV) and calbindin (CB), specific markers of fast-spiking (FS) and non-FS inhibitory interneurons, respectively, an indication of modified cortical inhibition. OBJECTIVE Since iTBS effects in humans have been shown to be NMDA receptor sensitive, we wondered whether the iTBS-induced changes in the molecular phenotype of interneurons may be also sensitive to glutamatergic synaptic transmission mediated by NMDA receptors. METHODS In a sham-controlled fashion, five iTBS-blocks of 600 stimuli were applied to rats either lightly anesthetized by only urethane or by an additional low (subnarcotic) or high dose of the NMDA receptor antagonist ketamine before immunohistochemical analysis. RESULTS iTBS reduced the number of neurons expressing GAD67, PV and CB. Except for CB, a low dose of ketamine partially prevented these effects while a higher dose almost completely abolished the iTBS effects. CONCLUSIONS Our findings indicate that iTBS modulates the molecular, and likely also the electric, activity of cortical inhibitory interneurons and that the modulation of FS-type but less that of non-FS-type neurons is mediated by NMDA receptors. A combination of iTBS with pharmacological interventions affecting distinct receptor subtypes may thus offer options to enhance its selectivity in modulating the activity of distinct cell types and preventing others from being modulated.


Restorative Neurology and Neuroscience | 2010

Cortical cellular actions of transcranial magnetic stimulation.

Klaus Funke; Alia Benali

Transcranial magnetic stimulation (TMS) can be used in two different ways to manipulate cortical information processing, either by applying a single pulse around the time point of expected task processing or by persistently shifting cortical excitability by repetitive stimulation (rTMS). Single pulses applied when specific cortical processing takes place always impair cortical function due to increased noise or enhanced inhibition, both resulting in decreased signal-to-noise ratio, while repetitive stimulation may allow to weaken or improve cortical processing depending on the type of stimulation. The opposite effects of low- ( approximately 1 Hz) and high-frequency rTMS (5-20 Hz), as well as the opposing effects of continuous versus intermittent theta-burst trains, lowering or raising cortical excitability respectively, have mainly been attributed to synaptic plasticity. As reviewed in this article, in a series of electrophysiological, immunohistochemical and molecular-biological animal experiments we obtained evidence for modulation of inhibitory cortical activity as a further reason of changing cortical excitability following rTMS.


eLife | 2017

Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

Bingshuo Li; Juha P Virtanen; A Oeltermann; Cornelius Schwarz; Martin A. Giese; Ulf Ziemann; Alia Benali

Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.


Experimental Brain Research | 2014

Strain differences in the effect of rTMS on cortical expression of calcium-binding proteins in rats

Annika Mix; Alia Benali; Klaus Funke

Using a rat model to study the cellular effects of repetitive transcranial magnetic stimulation (rTMS) with regard to changes in cortical excitability, we previously described opposite effects of continuous and intermittent theta-burst stimulation (cTBS, iTBS) on the expression of the calcium-binding proteins (CaBP) parvalbumin (PV), calbindin (CB) and calretinin (CR) in Dark Agouti rats (DA). While iTBS significantly reduced the number of cortical PV+ cells but did not affect the CB+ cells, cTBS resulted in a decrease in CB+ cells with no effects on PV+ cells. We concluded that activity of these classes of cortical interneurons is differently modulated by iTBS and cTBS. When testing two further rat strains, Sprague–Dawley (SD) and Long Evans (LE), we obtained deviating results. In SD, iTBS reduced PV and CB expression, while cTBS only reduced PV expression. In contrast, reanalysed DA showed reduced CB expression after cTBS and reduced PV expression after iTBS, while LE shows an intermediate reaction. CR expression was unaffected in any case. Interestingly, we found significantly different basal expression patterns of the CaBPs for the strains, with DA and LE showing much higher numbers of PV+, CB+ and CR+ cells than SD, and with particularly higher number of CB+ and CR+ cells in DA compared to the other two strains. These findings demonstrate that inhibitory systems may be either differently developed in rats belonging to diverse strains or show different basal levels of activity and CaBP expression and may therefore be differently sensitive to the rTMS protocols.

Collaboration


Dive into the Alia Benali's collaboration.

Top Co-Authors

Avatar

Klaus Funke

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Annika Mix

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Elke Weiler

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge