Aliaksei V. Pukin
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aliaksei V. Pukin.
ChemBioChem | 2009
Cristina Sisu; Andrew J. Baron; Hilbert M. Branderhorst; Simon D. Connell; Carel A. G. M. Weijers; Renko de Vries; Edward D. Hayes; Aliaksei V. Pukin; Michel Gilbert; Roland J. Pieters; Han Zuilhof; Gerben M. Visser; W. Bruce Turnbull
Divalent and tetravalent analogues of ganglioside GM1 are potent inhibitors of cholera toxin and Escherichia coli heat‐labile toxin. However, they show little increase in inherent affinity when compared to the corresponding monovalent carbohydrate ligand. Analytical ultracentrifugation and dynamic light scattering have been used to demonstrate that the multivalent inhibitors induce protein aggregation and the formation of space‐filling networks. This aggregation process appears to arise when using ligands that do not match the valency of the protein receptor. While it is generally accepted that multivalency is an effective strategy for increasing the activity of inhibitors, here we show that the valency of the inhibitor also has a dramatic effect on the kinetics of aggregation and the stability of intermediate protein complexes. Structural studies employing atomic force microscopy have revealed that a divalent inhibitor induces head‐to‐head dimerization of the protein toxin en route to higher aggregates.
Carbohydrate Research | 2008
Aliaksei V. Pukin; C.A.G.M. Weijers; Barend van Lagen; Rainer Wechselberger; Bin Sun; Michel Gilbert; Marie-France Karwaski; Dion E. A. Florack; Bart C. Jacobs; Anne P. Tio-Gillen; Alex van Belkum; Hubert P. Endtz; Gerben M. Visser; Han Zuilhof
Undec-10-enyl, undec-10-ynyl and 11-azidoundecyl glycoside analogues corresponding to the oligosaccharides of human gangliosides GM3, GM2 and GM1 were synthesized in high yields using glycosyltransferases from Campylobacter jejuni. Due to poor water solubility of the substrates, the reactions were carried out in methanol-water media, which for the first time were shown to be compatible with the C. jejuni alpha-(2-->3)-sialyltransferase (CST-06) and beta-(1-->4)-N-acetylgalactosaminyltransferase (CJL-30). Bioequivalence of our synthetic analogues and natural gangliosides was examined by binding to Vibrio cholerae toxin and to the B subunit of Escherichia coli heat-labile enterotoxin. This bioequivalence was confirmed by binding mouse and human monoclonal antibodies to GM1 and acute phase sera containing IgM and IgG antibodies to GM1 from patients with the immune-mediated polyneuropathy Guillain-Barré syndrome. The synthesized compounds were analyzed by 1D and 2D 900 MHz NMR spectroscopy. TOCSY and DQF-COSY experiments in combination with 13C-1H correlation measurements (HSQC, HMBC) were carried out for primary structural characterization, and a complete assignment of all 1H and 13C chemical shifts is presented.
ACS Chemical Biology | 2015
Ricardo Visini; Xian Jin; Myriam Bergmann; Gaëlle Michaud; Francesca Pertici; Ou Fu; Aliaksei V. Pukin; Thomas R. Branson; Dominique M. E. Thies-Weesie; Johan Kemmink; Emilie Gillon; Anne Imberty; Achim Stocker; Tamis Darbre; Roland J. Pieters; Jean-Louis Reymond
Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands. A model of the chelate bound GalAG2·LecA complex was also obtained rationalizing its unusually tight LecA binding (KD = 2.5 nM) and aggregation by lectin cross-linking. The very weak biofilm inhibition with divalent LecA inhibitors suggests that lectin aggregation is necessary for biofilm inhibition by GalAG2, pointing to multivalent glycoclusters as a unique opportunity to control P. aeruginosa biofilms.
Journal of Medicinal Chemistry | 2016
Domenique D. Zomer-van Ommen; Aliaksei V. Pukin; Ou Fu; Linda Quarles van Ufford; Hettie M. Janssens; Jeffrey M. Beekman; Roland J. Pieters
Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of IC50 values over a wide range of potencies (15 pM to 9 mM). The results indicate for the first time that an organoid-based swelling assay is a useful preclinical method to evaluate inhibitor potencies of drugs that target pathogen-derived toxins.
ChemistryOpen | 2015
Ou Fu; Aliaksei V. Pukin; H. C. Quarles van Ufford; Thomas R. Branson; Dominique M. E. Thies-Weesie; W. Bruce Turnbull; Gerben M. Visser; Roland J. Pieters
The five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface. Such simultaneous binding arising from the toxins multivalency is believed to enhance its affinity. Thus, blocking the initial attachment of the toxin to the cell surface using inhibitors with GM1 subunits has the potential to stop the disease. Previously we showed that tetravalent GM1 molecules were sub-nanomolar inhibitors of CTB5. In this study, we synthesized a pentavalent version and compared the binding and potency of penta- and tetravalent cholera toxin inhibitors, based on the same scaffold, for the first time. The pentavalent geometry did not yield major benefits over the tetravalent species, but it was still a strong inhibitor, and no major steric clashes occurred when binding the toxin. Thus, systems which can adopt more geometries, such as those described here, can be equally potent, and this may possibly be due to their ability to form higher-order structures or simply due to more statistical options for binding.
ChemistryOpen | 2015
Ou Fu; Aliaksei V. Pukin; H. C. Quarles van Ufford; Johan Kemmink; Nico J. de Mol; Roland J. Pieters
The bacterial adhesion lectin LecA is an attractive target for interference with the infectivity of its producer P. aeruginosa. Divalent ligands with two terminal galactoside moieties connected by an alternating glucose-triazole spacer were previously shown to be very potent inhibitors. In this study, we chose to prepare a series of derivatives with various new substituents in the spacer in hopes of further enhancing the LecA inhibitory potency of the molecules. Based on the binding mode, modifications were made to the spacer to enable additional spacer–protein interactions. The introduction of positively charged, negatively charged, and also lipophilic functional groups was successful. The compounds were good LecA ligands, but no improved binding was seen, even though altered thermodynamic parameters were observed by isothermal titration calorimetry (ITC).
Organic and Biomolecular Chemistry | 2011
Aliaksei V. Pukin; Dion E. A. Florack; Denis Brochu; Barend van Lagen; Gerben M. Visser; Tom Wennekes; Michel Gilbert; Han Zuilhof
Biotinylated analogues of gangliosides GM2, GM1, GD1a and GalNAc-GD1a were synthesized in high yields using glycosyltransferases from Campylobacter jejuni. The presence of a biotin moiety in the aglycone part of these mimics allows for attachment of these materials onto various streptavidin-coated surfaces. Analysis of the interaction of biotin-appended GM1 with the B subunit of Escherichia coli heat-labile enterotoxin performed in a modified ELISA procedure shows the potential of this compound to replace the natural GM1 in toxin detection.
Organic and Biomolecular Chemistry | 2015
Aliaksei V. Pukin; Arwin J. Brouwer; Leonie Koomen; H. C. Quarles van Ufford; Johan Kemmink; Nico J. de Mol; Roland J. Pieters
A new divalent highly potent inhibitor of the Pseudomonas aeruginosa lectin and virulence factor LecA was prepared. It contains two thiourea linkages which were found to be in the Z,Z isomeric form. This brings the spacer into an elongated conformation required to bridge the two binding sites, which results in the chelating binding mode responsible for the high potency.
Electrophoresis | 2018
Oier Aizpurua-Olaizola; Javier Sastre Toraño; Aliaksei V. Pukin; Ou Fu; Geert-Jan Boons; Gerhardus J. de Jong; Roland J. Pieters
Developing tools for the study of protein carbohydrate interactions is an important goal in glycobiology. Cholera toxin inhibition is an interesting target in this context, as its inhibition may help to fight against cholera. For the study of novel ligands an affinity capillary electrophoresis (ACE) method was optimized and applied. The method uses unlabeled cholera toxin B‐subunit (CTB) and unlabeled carbohydrate ligands based on ganglioside GM1‐oligosaccharides (GM1os). In an optimized method at pH 4, adsorption of the protein to the capillary walls was prevented by a polybrene‐dextran sulfate‐polybrene coating. Different concentrations of the ligands were added to the BGE. CTB binding was observed by a mobility shift that could be used for dissociation constant (Kd) determination. The Kd values of two GM1 derivatives differed by close to an order of magnitude (600 ± 20 nM and 90 ± 50 nM) which was in good agreement with the differences in their reported nanomolar IC50 values of an ELISA‐type assay. Moreover, the selectivity of GM1os towards CTB was demonstrated using Influenza hemagglutinin (H5) as a binding competitor. The developed method can be an important platform for preclinical development of drugs targeting pathogen‐induced secretory diarrhea.
Journal of Medicinal Chemistry | 2011
Kishore K. R. Tetala; Astrid P. Heikema; Aliaksei V. Pukin; C.A.G.M. Weijers; Anne P. Tio-Gillen; Michel Gilbert; Hubert P. Endtz; Alex van Belkum; Han Zuilhof; Gerben M. Visser; Bart C. Jacobs; Teris A. van Beek
Monolithic columns containing ganglioside GM2 and GM3 mimics were prepared for selective removal of serum anti-ganglioside antibodies from patients with acute and chronic immune-mediated neuropathies. ELISA results demonstrated that anti-GM2 IgM antibodies in human sera and a mouse monoclonal anti-GM2 antibody were specifically and selectively adsorbed by monolithic GM2 mimic columns and not by blank monolithic columns or monolithic GM3 mimic columns. In control studies, serum antibodies against the ganglioside GQ1b from another neuropathy patient were not depleted by monolithic GM2 mimic columns. Fluorescence microscopy with FITC-conjugated anti-human immunoglobulin antibodies showed that the immobilized ganglioside mimics were evenly distributed along the column. The columns were able to capture ∼95% of the anti-GM2 antibodies of patients after only 2 min of incubation. A monolithic column of 4.4 μL can deplete 28.2 μL of undiluted serum. These columns are potential diagnostic and therapeutic tools for neuropathies related to anti-ganglioside antibodies.