Alias A. Karim
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alias A. Karim.
Journal of Agricultural and Food Chemistry | 2009
Hui T. Chan; Rajeev Bhat; Alias A. Karim
The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch.
Carbohydrate Polymers | 2013
Abdorreza Mohammadi Nafchi; Roghayeh Nassiri; Samira Sheibani; Fazilah Ariffin; Alias A. Karim
The effects of zinc oxide nanorods (ZnO-nr) incorporation on the physical, mechanical, heat sealability, barrier, thermal and antibacterial properties of sago starch and bovine gelatin bionanocomposites films were investigated. The ZnO was incorporated into the films at different concentrations (1-5%, w/w total solid). All films were plasticized with 40% (w/w of total solid) of a combination of sorbitol/glycerol at 3:1 ratio. Incorporation of 5% of ZnO-nr to starch and gelatin films decreased the permeability to oxygen by 40% and 55%, respectively. Moisture content and water absorption capacity of the films were decreased by increasing the ZnO-nr contents. Mechanical and heat seal properties of the films were increased more than 20%. The films exhibited UV absorption and displayed an excellent antimicrobial activity against the Escherichia coli. These properties suggest that bionanocomposites based on ZnO-nr have the potential as an active packaging material for food and pharmaceutical industries.
Journal of the Science of Food and Agriculture | 2011
Fazilah Ariffin; Shio Heong Chew; Kaur Bhupinder; Alias A. Karim; Nurul Huda
BACKGROUND C. asiatica was exposed to various fermentations: no fermentation (0 min), partial fermentation (120 min) and full fermentation (24 h). Total phenolic content (TPC) and ferric-reducing antioxidant power (FRAP) of C. asiatica infusions were studied as a function of water temperature (60, 80 or 100 °C), the brewing stage (one, two or three) and the brewing time (1, 3, 5, 10, 15 or 20 min). The optimum brewing procedure was adopted to study the antioxidant properties and phenolic compounds in C. asiatica infusions. RESULTS The optimum extraction efficiency of C. asiatica infusions was achieved at 100 °C after a 10 min brewing time, and decreased substantially after applying multiple brewing steeps. However, no significant different was found between the second and third infusions. The non-fermented C. asiatica (CANF) infusion had the highest antioxidant activity. Gallic acid, naringin, chlorogenic acid, catechin, rutin, rosmarinic acid and quercetin were identified to present. Luteolin and kaempferol were only found in 80% methanol extraction method. CONCLUSION C. asiatica herbal teas should be prepared at 100 °C for 10 min to obtain the optimum antioxidant capacity. Multiple brewing steps in C. asiatica herbal tea are encouraged due to the certain amount of antioxidant obtained.
Journal of Agricultural and Food Chemistry | 2009
A. Fazilah; Mohamed N. Mohd Azemi; Alias A. Karim; Mohd N. Norakma
Hemicelluloses from oil palm frond (OPF) were extracted using 3 M potassium hydroxide (KOH) for 4 h at 40 degrees C with stirring at 400 rpm to obtain hemicelluloses A and B. The total yield of the hemicellulose isolated from OPF was 33% (dry weight). Both hemicelluloses A and B were then subjected to hydrothermal treatment at 121 degrees C and 1.03 x 10(5) Pa for 10, 30, and 50 min. Physicochemical characterizations of hydrothermally treated hemicelluloses, such as Klason lignin content and reducing sugar content, were performed to study the effect of autohydrolysis processing on OPF-derived hemicelluloses. It was shown that Klason lignin content in hemicellulose A was higher than that in hemicellulose B and decreased after hydrothermal treatment. Hydrothermal treatment enhanced the solubility of hemicelluloses, which reflects their higher reducing sugar content. Monosaccharide analysis using HPLC showed that xylose was the predominant monosaccharide for both hemicelluloses A and B.
Journal of Agricultural and Food Chemistry | 2011
Yau-Hoong Kuan; Rajeev Bhat; Alias A. Karim
The physicochemical and functional properties of ultraviolet (UV)-treated egg white protein (EW) and sodium caseinate (SC) were investigated. UV irradiation of the proteins was carried out for 30, 60, 90, and 120 min. However, the SC samples were subjected to extended UV irradiation for 4 and 6 h as no difference was found on the initial UV exposure time. Formol titration, SDS-PAGE, and FTIR analyses indicated that UV irradiation could induce cross-linking on proteins and led to improved emulsifying and foaming properties (P < 0.05). These results indicated that the UV-irradiated EW and SC could be used as novel emulsifier and foaming agents in broad food systems for stabilizing and foaming purposes.
International Journal of Biological Macromolecules | 2013
Abdorreza Mohammadi Nafchi; Ramin Hashemi Tabatabaei; Bita Pashania; Hadiseh Z. Rajabi; Alias A. Karim
The effects of reducing sugars (fructose, glucose, ribose, and arabinose), sucrose, and ascorbic acid were studied on thermo-mechanical properties and crosslinking of egg white proteins (EWP) through Maillard reaction. Sugars (0%, 1%, 5%, and 10%) and ascorbic acid (0%, 0.25%, 0.5%, and 2.5%) were added to EWP solutions. Thermal denaturation and crosslinking of EWP were characterized by differential scanning calorimetry (DSC). Mechanical properties (failure strength, failure strain and Youngs modulus) of modified and unmodified EWP gels were evaluated by texture analyzer. Ascorbic acid decreased thermal denaturation temperature of EWP, but the reducing sugars increased the denaturation temperature. DSC thermograms of EWP showed that ascorbic acid exhibited an exothermic transition (≈110 °C) which was attributed to Maillard crosslinking of the protein. The reduction in pH (from 7.21 to ≈6) and protein solubility of egg white protein gel (from ≈70% to ≈10%) provides further evidence of the formation of Maillard cross-linking. Reactive sugars (ribose and arabinose) increased the mechanical properties of EWP gels, whereas ascorbic acid decreased the mechanical properties. Generally, the effect of ascorbic acid was more pronounced than that of various reducing sugars on the thermal and mechanical properties of egg white proteins.
Comptes Rendus Biologies | 2009
Rajeev Bhat; H.P.S.A. Khalil; Alias A. Karim
This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.
Journal of Agricultural and Food Chemistry | 2010
Loo Siew-Wai; Tan Zi-Ni; Alias A. Karim; Norziah M. Hani; A. Rosma
The in vitro fermentability of sago (Metroxylon sagu) resistant starch type III (RS(3)) by selected probiotic bacteria was investigated. Sago RS(3) with 12% RS content was prepared by enzymatic debranching of native sago starch with pullulanase enzyme, followed by autoclaving, cooling, and annealing. The fermentation of sago RS(3) by L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. casei FTCC 0442, and B. bifidum BB12 was investigated by observing the bacterial growth, carbohydrate consumption profiles, pH changes, and total short chain fatty acids (SCFA) produced in the fermentation media. Comparisons were made with commercial fructo-oligosaccharide (FOS), Hi-maize 1043, and Hi-maize 240. Submerged fermentations were conducted in 30 mL glass vials for 24 h at 37 degrees C in an oven without shaking. The results indicated that fermentation of sago RS(3) significantly (P < 0.05) yielded the highest count of Lactobacillus sp. accompanied by the largest reduction in pH of the medium. Sago RS(3) was significantly the most consumed substrate compared to FOS and Hi-maizes.
Journal of the Science of Food and Agriculture | 2013
Zainul Abedin; Alias A. Karim; Faiyaz Ahmed; Aishah A. Latiff; Chee-Yuen Gan; Farid Che Ghazali; Zaidul Islam Sarker
BACKGROUND Sea cucumber (Stichopus vastus) is considered an underutilized resource, since only its stomach and intestines are eaten raw as salad in a few countries and the remaining parts, especially the integument rich in collagen, is discarded. Hence a valuable by-product having potential nutraceutical and pharmaceutical applications is wasted. In the present investigation, pepsin-solubilized collagen (PSC) from the integument of S. vastus was isolated, purified and characterized. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis showed that the purified collagen was of type I, consisting of three α1 chains of approximately 122 kDa each. The peptide map of PSC digested by V8 protease was different from that of calf skin type I collagen. Fourier transform infrared spectroscopy revealed that the triple helical structure was well preserved in isolated collagen. The denaturation temperature of PSC was 21.23 °C and showed good gel-forming capability at pH 6.5 and 300 mmol L⁻¹ NaCl. CONCLUSION It is inferred that the collagen isolated from S. vastus integument has potential for use as an alternative to land-based mammalian collagen in food, nutraceuticals and pharmaceutical industries.
Food Chemistry | 2013
Abraham Olasupo Oladebeye; Aladesanmi A. Oshodi; Isiaka Adekunle Amoo; Alias A. Karim
Ozone-oxidised starches were prepared from the native starches isolated from white and red cocoyam, and white and yellow yam cultivars. The native and oxidised starches were evaluated for functional, thermal and molecular properties. The correlations between the amount of reacted ozone and carbonyl and carboxyl contents of the starches were positive, as ozone generation time (OGT) increased. Significant differences were obtained in terms of swelling power, solubility, pasting properties and textural properties of the native starches upon oxidation. The DSC data showed lower transition temperatures and enthalpies for retrograded gels compared to the gelatinized gels of the same starch types. The native starches showed CB-type XRD patterns while the oxidised starches resembled the CA-type pattern. As amylose content increased, amylopectin contents of the starches decreased upon oxidation. Similarly, an increase in Mw values were observed with a corresponding decrease in Mn values upon oxidation.