Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aliasger K. Salem is active.

Publication


Featured researches published by Aliasger K. Salem.


Advanced Healthcare Materials | 2015

3D Printing of Scaffolds for Tissue Regeneration Applications

Anh-Vu Do; Behnoush Khorsand; Sean M. Geary; Aliasger K. Salem

The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo

Harshad S. Sakhalkar; Milind K. Dalal; Aliasger K. Salem; Ramin Ansari; Jie Fu; Mohammad F. Kiani; David T. Kurjiaka; Justin Hanes; Kevin M. Shakesheff; Douglas J. Goetz

We exploited leukocyte–endothelial cell adhesion chemistry to generate biodegradable particles that exhibit highly selective accumulation on inflamed endothelium in vitro and in vivo. Leukocyte–endothelial cell adhesive particles exhibit up to 15-fold higher adhesion to inflamed endothelium, relative to noninflamed endothelium, under in vitro flow conditions similar to that present in blood vessels, a 6-fold higher adhesion to cytokine inflamed endothelium relative to non-cytokine-treated endothelium in vivo, and a 10-fold enhancement in adhesion to trauma-induced inflamed endothelium in vivo due to the addition of a targeting ligand. The leukocyte–inspired particles have adhesion efficiencies similar to that of leukocytes and were shown to target each of the major inducible endothelial cell adhesion molecules (E-selectin, P-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1) that are up-regulated at sites of pathological inflammation. The potential for targeted drug delivery to inflamed endothelium has significant implications for the improved treatment of an array of pathologies, including cardiovascular disease, arthritis, inflammatory bowel disease, and cancer.


Pharmaceutical Research | 2011

Nanoparticle Delivery Systems in Cancer Vaccines

Yogita Krishnamachari; Sean M. Geary; Caitlin D. Lemke; Aliasger K. Salem

ABSTRACTTherapeutic strategies that involve the manipulation of the host’s immune system are gaining momentum in cancer research. Antigen-loaded nanocarriers are capable of being actively taken up by antigen-presenting cells (APCs) and have shown promising potential in cancer immunotherapy by initiating a strong immunostimulatory cascade that results in potent antigen-specific immune responses against the cancer. Such carrier systems offer versatility in that they can simultaneously co-deliver adjuvants with the antigens to enhance APC activation and maturation. Furthermore, modifying the surface properties of these nanocarriers affords active targeting properties to APCs and/or enhanced accumulation in solid tumors. Here, we review some recent advances in these colloidal and particulate nanoscale systems designed for cancer immunotherapy and the potential for these systems to translate into clinical cancer vaccines.


Advanced Drug Delivery Reviews | 2009

Innovative strategies for co-delivering antigens and CpG oligonucleotides

Yogita Krishnamachari; Aliasger K. Salem

Cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODN) is a recent class of immunostimulatory adjuvants that includes unmethylated CpG dinucleotide sequences similar to those commonly found in bacterial DNA. CpG ODN specifically triggers toll like receptor 9 (TLR9), which is found within phagoendosomes of antigen presenting cells (APCs) such as dendritic cells (DCs). CpG ODN triggers activation and maturation of DCs and helps to increase expression of antigens. CpG ODN can be used to induce polarized Th1 type immune responses. Several studies have shown that antigens and CpG ODN must be co-localized in the same APC to generate the most potent therapeutic antigen-specific immune responses. Delivery vehicles can be utilized to ensure co-delivery of antigens and CpG ODN to the same APCs and to significantly increase uptake by APCs. These strategies can result in antigen-specific immune responses that are 5 to 500-fold greater than administration of antigen alone. In this review, we discuss several recent and innovative strategies to co-delivering antigens and CpG ODN adjuvants to APCs. These approaches include the utilization of conjugate molecules, multi-component nanorods, liposomes, biodegradable microparticles, pulsatile release chips and cell-microparticle hybrids.


Biotechnology Progress | 2008

Optimization of yield in magnetic cell separations using nickel nanowires of different lengths.

Anne Hultgren; Monica Tanase; Edward J. Felton; Kiran Bhadriraju; Aliasger K. Salem; Christopher S. Chen; Daniel H. Reich

Ferromagnetic nanowires are shown to perform both high yield and high purity single‐step cell separations on cultures of NIH‐3T3 mouse fibroblast cells. The nanowires are made by electrochemical deposition in nanoporous templates, permitting detailed control of their chemical and physical properties. When added to fibroblast cell cultures, the nanowires are internalized by the cells via the integrin‐mediated adhesion pathway. The effectiveness of magnetic cell separations using Ni nanowires 350 nm in diameter and 5–35 micrometers long in field gradients of 40 T/m was compared to commercially available superparamagnetic beads. The percent yield of the separated populations is found to be optimized when the length of the nanowire is matched to the diameter of the cells in the culture. Magnetic cell separations performed under these conditions achieve 80% purity and 85% yield, a 4‐fold increase over the beads. This effect is shown to be robust when the diameter of the cell is changed within the same cell line using mitomycin‐C.


Journal of Controlled Release | 2008

Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo

Janjira Intra; Aliasger K. Salem

Polyethylenimine (PEI) is a cationic polymer that has shown significant potential for delivering genes in vitro and in vivo. Mixing cationic PEI with negatively charged plasmid DNA (pDNA) results in the spontaneous electrostatic formation of stable nanoparticle complexes. The structure of PEI can be branched or linear. In this study, we show that branched PEI has a stronger electrostatic interaction with pDNA than linear PEI, which accounts for greater compaction, higher zeta potentials and smaller nanoparticle sizes at equivalent pDNA concentrations. For both linear and branched PEI, increasing the concentration of pDNA mixed in the same volume and at the same nitrogen to phosphate (N:P) ratio results in larger average particle sizes. Increasing the N:P ratio increases luciferase activity generated by branched PEI-pDNA nanoparticles and linear PEI-pDNA nanoparticles in HEK293, COS7 and HeLa cell lines. Increasing the N:P ratio at which branched PEI-pDNA nanoparticles are prepared also increases luciferase expression in HepG2 cells but does not increase luciferase expression generated by linear PEI-pDNA nanoparticles. In all of the cell lines, branched PEI-pDNA nanoparticles prepared at N:P ratios of 10 and above generated significantly higher luciferase activity than linear PEI-pDNA nanoparticles. Luciferase activity was highest in the HEK293 cells and luciferase expression in each of the cell lines followed the order of HEK293>COS7>HepG2>HeLa. Intraperitoneal (IP) injection of PEI-pDNA nanoparticles is attractive because it is simple, reproducible and often leads to a depot effect of nanoparticle complexes residing in the peritoneum. The IP route of administration avoids PEI-pDNA nanoparticle accumulation in the lung and the nanoparticles do not pass through the blood-brain barrier. In this study, using bioluminescent imaging (BLI), we show that changing the PEI structure and dose of the PEI-pDNA nanoparticles has a significant impact on the strength and duration of transgene expression after IP injection in vivo but increasing the N:P ratio does not. Increasing the dose and N:P ratio for all the PEI-pDNA nanoparticle formulations injected IP did not reduce mice survival and all mice remained in good health as determined by the Body Condition Scoring (BCS) technique.


Biomaterials | 2014

The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor

Satheesh Elangovan; Sheetal R. D'Mello; Liu Hong; Ryan D. Ross; Chantal Allamargot; Deborah V. Dawson; Clark M. Stanford; Georgia K. Johnson; D. Rick Sumner; Aliasger K. Salem

Gene therapy using non-viral vectors that are safe and efficient in transfecting target cells is an effective approach to overcome the shortcomings of protein delivery of growth factors. The objective of this study was to develop and test a non-viral gene delivery system for bone regeneration utilizing a collagen scaffold to deliver polyethylenimine (PEI)-plasmid DNA (pDNA) [encoding platelet derived growth factor-B (PDGF-B)] complexes. The PEI-pPDGF-B complexes were fabricated at amine (N) to phosphate (P) ratio of 10 and characterized for size, surface charge, and in vitro cytotoxicity and transfection efficacy in human bone marrow stromal cells (BMSCs). The influence of the complex-loaded collagen scaffold on cellular attachment and recruitment was evaluated in vitro using microscopy techniques. The in vivo regenerative capacity of the gene delivery system was assessed in 5 mm diameter critical-sized calvarial defects in Fisher 344 rats. The complexes were ~100 nm in size with a positive surface charge. Complexes prepared at an N/P ratio of 10 displayed low cytotoxicity as assessed by a cell viability assay. Confocal microscopy revealed significant proliferation of BMSCs on complex-loaded collagen scaffolds compared to empty scaffolds. In vivo studies showed significantly higher new bone volume/total volume (BV/TV) % in calvarial defects treated with the complex-activated scaffolds following 4 weeks of implantation (14- and 44-fold higher) when compared to empty defects or empty scaffolds, respectively. Together, these findings suggest that non-viral PDGF-B gene-activated scaffolds are effective for bone regeneration and are an attractive gene delivery system with significant potential for clinical translation.


Journal of Immunotherapy | 2007

Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles

Xue-Qing Zhang; Christopher E. Dahle; Nicki K. Baman; Nathan Rich; George J. Weiner; Aliasger K. Salem

CpG ODN stimulates a TH1 response through its receptor Toll-like receptor 9 (TLR9). TLR9 is a receptor that is found intracellularly. Microparticles are efficiently internalized by dendritic cells (DCs) and macrophages and would thus be an ideal delivery vehicle for CpG ODN to reach its target site thereby enhancing the TH1 response to an antigen also encapsulated in the microparticle. Here, we show that careful control over fabrication parameters can produce biodegradable microparticles with predictable size distributions, surface morphology, and shape. Entrapment efficiencies of the model antigen OVA ranged from 19% to 23% with an average loading of 10 μg/mg of microparticles. For CpG ODN, these values were 33% to 35%, which corresponded to an average loading of 8.5 μg/mg of microparticles. The microparticles release CpG ODN and OVA in a burst followed by sustained release profile. At the highest concentration of microparticles incubated with a pure DC cell line, 92% of DCs had internalized microparticles by 16 hours, confirming that DCs efficiently take up the microparticles. Microparticles are capable of inducing DC maturation as determined by up-regulation of CD80 and CD86 markers. Although the presence of CpG ODN in the microparticles did not impact on the phenotype of the DCs, it was necessary for DCs to induce activation of antigen-specific T cells as indicated by interferon-γ production. Microparticles entrapping both antigen and CpG ODN induced significantly higher amounts of anti-OVA antibody production than other preparations such as the soluble OVA and CpG ODN (P<0.01) and stimulated stronger IgG2a production than delivery of microparticles entrapping antigen alone. We conclude that coencapsulating immunostimulatory CpG ODN and antigen in degradable microparticles is an effective approach to enhancing development of a TH1 immune response.


Journal of Microencapsulation | 2008

Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods

Xue-Qing Zhang; Janjira Intra; Aliasger K. Salem

Controlled release of plasmid DNA (pDNA) from biodegradable poly lactic-co-glycolic acid (PLGA) microparticles has the potential to enhance transgene expression. However, barriers to this approach include limited encapsulation efficiency, pDNA damage during fabrication and confinement of the microparticles inside phagolysosomal compartments. Combining PLGA with poly ethyleneimine (PEI) can improve protection of pDNA during fabrication, increase encapsulation efficiencies and impart the PLGA microparticles with the capacity to escape the phagolysosomal compartments. This study compares three promising formulation methods for preparing PLGA PEI pDNA microparticles and evaluates for buffering capacity, cellular uptake, transfection efficiency and toxicity. In the first method, PLGA PEI pDNA microparticles are prepared by entrapping pDNA in blended PLGA/PEI using the double emulsion water-in-oil-in-water solvent evaporation technique (PA). In a second approach, PEI-pDNA polyplexes are prepared and then entrapped in PLGA microparticles using a double emulsion solvent evaporation method (PB). Microparticles prepared using formulation methods PA and PB are then compared against PLGA microparticles with PEI conjugated to the surface using carbodiimide chemistry (PC); 0.5% PVA is identified as the optimum concentration of surfactant for generating the strongest transfection efficiencies. N:P ratios of 5 and 10 are selected for preparation of each group. Gel electrophoresis demonstrates that all PLGA microparticle formulations have strong pDNA binding capacity. An MTT assay shows that in vitro cytotoxicity of PLGA PEI microparticles is significantly lower than PEI alone. PLGA PEI pDNA microparticles mediate higher cellular uptake efficiency and consequently higher transgene expression than unmodified PLGA microparticles in COS7 and HEK293 cells. Preparing PEI-pDNA polyplexes prior to entrapment in PLGA microparticles (PB) results in the highest pDNA loading. This is 2.5-fold higher than pDNA loading in unmodified PLGA microparticles. PLGA PEI pDNA microparticles prepared using method PB generates the strongest transfection efficiencies, which are 500-fold higher than unmodified PLGA pDNA microparticles in HEK293 cells and 1800-fold higher in COS-7 cells. The highest transfection efficiencies generated from microparticles prepared using method PB is achieved using an N:P ratio of 5.


Nanotechnology | 2005

Multi-component nanorods for vaccination applications

Aliasger K. Salem; C F Hung; T W Kim; T C Wu; Peter C. Searson; Kam W. Leong

Immune responses from Au/Ni nanorods prepared by electrochemical deposition in alumina templates are evaluated in C57BL/6 mice. When the nanorods are bombarded into skin, they generate a strong CD8 T-cell and antibody response. When pcDNA3 is bound to the Ni segment of the nanorod, it provides a strong immunostimulatory adjuvant effect to the antigen bound on the Au segment.

Collaboration


Dive into the Aliasger K. Salem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge