Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Bertaina is active.

Publication


Featured researches published by Alice Bertaina.


Blood | 2014

HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders

Alice Bertaina; Pietro Merli; Sergio Rutella; Daria Pagliara; Maria Ester Bernardo; Riccardo Masetti; Daniela Pende; Michela Falco; Rupert Handgretinger; Francesca Moretta; Barbarella Lucarelli; Letizia Pomponia Brescia; Giuseppina Li Pira; Manuela Testi; Caterina Cancrini; Nabil Kabbara; Rita Carsetti; Andrea Finocchi; Alessandro Moretta; Lorenzo Moretta; Franco Locatelli

Twenty-three children with nonmalignant disorders received HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) after ex vivo elimination of αβ(+) T cells and CD19(+) B cells. The median number of CD34(+), αβ(+)CD3(+), and B cells infused was 16.8 × 10(6), 40 × 10(3), and 40 × 10(3) cells/kg, respectively. No patient received any posttransplantation pharmacologic prophylaxis for graft-versus-host disease (GVHD). All but 4 patients engrafted, these latter being rescued by a second allograft. Three patients experienced skin-only grade 1 to 2 acute GVHD. No patient developed visceral acute or chronic GVHD. Cumulative incidence of transplantation-related mortality was 9.3%. With a median follow-up of 18 months, 21 of 23 children are alive and disease-free, the 2-year probability of disease-free survival being 91.1%. Recovery of γδ(+) T cells was prompt, but αβ(+) T cells progressively ensued over time. Our data suggest that this novel graft manipulation strategy is safe and effective for haplo-HSCT. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Bone Marrow Transplantation | 2011

Co-infusion of ex vivo- expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation

Maria Ester Bernardo; Lynne M. Ball; Angela Cometa; Helene Roelofs; Marco Zecca; M. A. Avanzini; Alice Bertaina; Luciana Vinti; Arjan C. Lankester; Rita Maccario; Olle Ringdén; K. Le Blanc; R M Egeler; Willem E. Fibbe; F Locatelli

When compared with BMT, umbilical cord blood transplantation (UCBT) is associated with a lower rate of engraftment and delayed hematological/immunological recovery. This leads to increased risk of TRM in the early post transplantation period due to infection. Acute GVHD, although occurring less frequently in UCBT compared with BMT, is also significantly associated with increased rate of early TRM. BM MSCs are known to support normal in vivo hematopoiesis, and co-transplantation of MSCs has been shown to enhance engraftment of human cord blood hematopoietic cells in nonobese diabetic/SCID mice. In 13 children with hematological disorders (median age 2 years) undergoing UCBT, we co-transplanted paternal, HLA-disparate MSCs with the aim of improving hematological recovery and reducing rejection. We observed no differences in hematological recovery or rejection rates compared with 39 matched historical controls, most of whom received G-CSF after UCBT. However, the rate of grade III and IV acute GVHD was significantly decreased in the study cohort when compared with controls (P=0.05), thus resulting in reduced early TRM. Although these data do not support the use of MSCs in UCBT to support hematopoietic engraftment, they suggest that MSCs, possibly because of their immunosuppressive effect, may abrogate life-threatening acute GVHD and reduce early TRM.


British Journal of Haematology | 2013

Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III-IV acute graft-versus-host disease.

Lynne M. Ball; Maria Ester Bernardo; Helene Roelofs; Maarten J. D. van Tol; Benedetta Contoli; Jaap Jan Zwaginga; M. A. Avanzini; Antonella Conforti; Alice Bertaina; Giovanna Giorgiani; Cornelia M. Jol-van der Zijde; Marco Zecca; Katarina Le Blanc; Francesco Frassoni; Rudolph Maarten Egeler; Willem E. Fibbe; Arjan C. Lankester; Franco Locatelli

Mesenchymal stromal cell (MSC) infusions have been reported to be effective in patients with steroid‐refractory, acute graft‐versus‐host disease (aGvHD) but comprehensive data on paediatric patients are limited. We retrospectively analysed a cohort of 37 children (aged 3 months‐17 years) treated with MSCs for steroid‐refractory grade III–IV aGvHD. All patients but three received multiple MSC infusions. Complete response (CR) was observed in 24 children (65%), while 13 children had either partial (n = 8) or no response (n = 5). Cumulative incidence of transplantation‐related mortality (TRM) in patients who did or did not achieve CR was 17% and 69%, respectively (P = 0·001). After a median follow‐up of 2·9 years, overall survival (OS) was 37%; it was 65% vs. 0% in patients who did or did not achieve CR, respectively (P = 0·001). The median time from starting steroids for GvHD treatment to first MSC infusion was 13 d (range 5–85). Children treated between 5 and 12 d after steroid initiation showed a trend for better OS (56%) and lower TRM (17%) as compared with patients receiving MSCs 13–85 d after steroids (25% and 53%, respectively; P = 0·22 and 0·06, respectively). Multiple MSC infusions are safe and effective for children with steroid‐refractory aGvHD, especially when employed early in the disease course.


Blood | 2012

Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan

Maria Ester Bernardo; Eugenia Piras; Adriana Vacca; Giovanna Giorgiani; Marco Zecca; Alice Bertaina; Daria Pagliara; Benedetta Contoli; Rita Maria Pinto; Giovanni Caocci; Angela Mastronuzzi; Giorgio La Nasa; Franco Locatelli

Sixty thalassemia patients (median age, 7 years; range, 1-37) underwent allogeneic hematopoietic stem cell transplantation (HSCT) after a preparation combining thiotepa, treosulfan, and fludarabine. Before HSCT, 27 children were assigned to risk class 1 of the Pesaro classification, 17 to class 2, and 4 to class 3; 12 patients were adults. Twenty patients were transplanted from an HLA-identical sibling and 40 from an unrelated donor. The cumulative incidence of graft failure and transplantation-related mortality was 9% and 7%, respectively. Eight patients experienced grade II-IV acute GVHD, the cumulative incidence being 14%. Among 56 patients at risk, 1 developed limited chronic GVHD. With a median follow-up of 36 months (range, 4-72), the 5-year probability of survival and thalassemia-free survival are 93% and 84%, respectively. Neither the class of risk nor the donor used influenced outcome. This treosulfan-based preparation proved to be safe and effective for thalassemia patients given allogeneic HSCT.


Journal of Immunology | 2014

Human Cytomegalovirus Infection Promotes Rapid Maturation of NK Cells Expressing Activating Killer Ig–like Receptor in Patients Transplanted with NKG2C−/− Umbilical Cord Blood

Mariella Della Chiesa; Michela Falco; Alice Bertaina; Letizia Muccio; Claudia Alicata; Francesco Frassoni; Franco Locatelli; Lorenzo Moretta; Alessandro Moretta

NK cells are the first lymphoid population recovering after allogeneic hematopoietic stem cell transplantation and play a crucial role in early immunity after the graft. Recently, it has been shown that human CMV (HCMV) infection/reactivation can deeply influence NK cell reconstitution after umbilical cord blood transplantation by accelerating the differentiation of mature NKG2A−killer Ig-like receptor (KIR)+ NK cells characterized by the expression of the NKG2C-activating receptor. In view of the hypothesis that NKG2C could be directly involved in NK cell maturation driven by HCMV infection, we analyzed the maturation and function of NK cells developing in three patients with hematological malignancies given umbilical cord blood transplantation from donors carrying a homozygous deletion of the NKG2C gene. We show that HCMV infection can drive rapid NK maturation, characterized by the expansion of CD56dimNKG2A−KIR+ cells, even in the absence of NKG2C expression. Interestingly, this expanded mature NK cell subset expressed surface-activating KIR that could trigger NK cell cytotoxicity, degranulation, and IFN-γ release. Given the absence of NKG2C, it is conceivable that activating KIRs may play a role in the HCMV-driven NK cell maturation and that NK cells expressing activating KIRs might contribute, at least in part, to the control of infections after transplantation.


Blood | 2015

γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes

Irma Airoldi; Alice Bertaina; Ignazia Prigione; Alessia Zorzoli; Daria Pagliara; Claudia Cocco; Raffaella Meazza; Fabrizio Loiacono; Barbarella Lucarelli; Maria Ester Bernardo; Giulia Barbarito; Daniela Pende; Alessandro Moretta; Vito Pistoia; Lorenzo Moretta; Franco Locatelli

We prospectively assessed functional and phenotypic characteristics of γδ T lymphocytes up to 7 months after HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) depleted of αβ(+) T cells and CD19(+) B cells in 27 children with either malignant or nonmalignant disorders. We demonstrate that (1) γδ T cells are the predominant T-cell population in patients during the first weeks after transplantation, being mainly, albeit not only, derived from cells infused with the graft and expanding in vivo; (2) central-memory cells predominated very early posttransplantation for both Vδ1 and Vδ2 subsets; (3) Vδ1 cells are specifically expanded in patients experiencing cytomegalovirus reactivation and are more cytotoxic compared with those of children who did not experience reactivation; (4) these subsets display a cytotoxic phenotype and degranulate when challenged with primary acute myeloid and lymphoid leukemia blasts; and (5) Vδ2 cells are expanded in vitro after exposure to zoledronic acid (ZOL) and efficiently lyse primary lymphoid and myeloid blasts. This is the first detailed characterization of γδ T cells emerging in peripheral blood of children after CD19(+) B-cell and αβ(+) T-cell-depleted haplo-HSCT. Our results can be instrumental to the development of clinical trials using ZOL for improving γδ T-cell killing capacity against leukemia cells. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Frontiers in Immunology | 2013

Cellular and molecular basis of haploidentical hematopoietic stem cell transplantation in the successful treatment of high-risk leukemias: role of alloreactive NK cells

Franco Locatelli; Daniela Pende; Maria Cristina Mingari; Alice Bertaina; Michela Falco; Alessandro Moretta; Lorenzo Moretta

Natural killer (NK) cells are involved in innate immune responses and play a major role in tumor surveillance and in defense against viruses. Human NK cells recognize human leukocyte antigen (HLA) class I molecules via surface receptors [killer immunoglobulin-like receptor (KIR) and NKG2A] delivering signals that inhibit NK cell function and kill HLA class I-deficient target cells, a frequent event in tumors or virus-infected cells. NK cell triggering is mediated by activating receptors that recognize ligands expressed primarily on tumors or virus-infected cells. NK cells play also a key role in the cure of high-risk leukemias. Thus, donor-derived “alloreactive” NK cells are fundamental effectors in adult acute myeloid leukemia and in pediatric acute lymphoblastic leukemia patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT). Alloreactive NK cells mediate killing of leukemia cells and patient’s dendritic cell, thus preventing respectively leukemic relapses and graft-vs-host responses. Cytofluorimetric analysis of KIRs expressed by NK cells allows to define the size of the alloreactive NK subset and the selection of the best potential donor. Recently, it has been shown that also the expression of activating KIRs, in particular the (C2-specific) KIR2DS1, may contribute to donor NK alloreactivity. It has also been established a correlation between the size of the alloreactive NK cell population and the clinical outcome. Notably, the alloreactive NK cells derived from donor’s hematopoietic stem cells are generated and persist in patients over time. The high survival rates of patients undergoing haploidentical HSCT highlight an important new reality in the setting of allograft performed to cure otherwise fatal leukemias. Novel approaches are in progress to further improve the clinical outcome based on the infusion of donor alloreactive NK cells either as a component of the transplanted cell population or as in vitro expanded NK cells.


Blood | 2014

KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL

Lena Oevermann; Sebastian Michaelis; Markus Mezger; Peter Lang; Jacek Toporski; Alice Bertaina; Marco Zecca; Lorenzo Moretta; Franco Locatelli; Rupert Handgretinger

We analyzed the influence of donor killer-cell immunoglobulin-like receptor (KIR) gene haplotypes on the risk for relapse and the probability of event-free survival (EFS) in children with acute lymphoblastic leukemia who received human leukocyte antigen-haploidentical transplantation of ex vivo T-cell-depleted peripheral blood stem cells. The KIR gene haplotype was evaluated in 85 donors, and the KIR B content score was determined in the 63 KIR haplotype B donors. Patients transplanted from a KIR haplotype B donor had a significantly better EFS than those transplanted from a KIR haplotype A donor (50.6% vs 29.5%, respectively; P = .033). Moreover, a high donor KIR B-content score was associated with a significantly reduced risk for relapse (Log-rank test for trend, P = .026). These data indicate that KIR genotyping should be included in the donor selection algorithm for haploidentical transplantation in children with acute lymphoblastic leukemia with the aim of choosing, whenever possible, a KIR haplotype B donor with a high KIR B-content score.


Immunology Letters | 2013

Negative depletion of α/β+ T cells and of CD19+ B lymphocytes: A novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation

Franco Locatelli; Aurelie Bauquet; Giuseppe A. Palumbo; Francesca Moretta; Alice Bertaina

In recent years, infusion of T-cell depleted hematopoietic stem cells from an HLA-haploidentical relative has been shown to represent a suitable and effective, alternative option in patients in need of an allograft who lack an HLA-identical relative. In particular, this type of allograft is associated with the enormous advantage of offering an immediate transplant treatment to virtually all pediatric patients without an HLA-matched donor, whether related or unrelated, or a suitable umbilical cord blood unit. Several studies have shown that in patients given a T-cell depleted transplant relevant part of the anti-leukemia effect is mediated by alloreactive (i.e. KIR/HLA mismatched) Natural Killer cells originated from donor hematopoietic stem cells. After infusion of positively selected hematopoietic stem cell, fully functioning Natural Killer cells emerge in the recipient peripheral blood, persisting over time, only several weeks after the allograft. We have developed a new method of T-cell depletion (based on the physical elimination of mature T cells carrying α and β chains of the T-cell receptor), which permits to maintain mature donor-derived alloreactive Natural Killer cells and γδ(+) T cells in the graft. We, thus, started a formal study in children with hematological disorders aimed at evaluating the safety and efficacy of this approach. Preliminary results on 60 children transplanted so far after this type of graft manipulation are particularly promising.


Bone Marrow Transplantation | 2015

Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: A nationwide retrospective survey from Italy

Corrado Girmenia; Gian Maria Rossolini; Alfonso Piciocchi; Alice Bertaina; Giovanni Pisapia; Domenico Pastore; Simona Sica; A. Severino; L. Cudillo; Fabio Ciceri; Rosanna Scimè; Letizia Lombardini; Claudio Viscoli; Alessandro Rambaldi

Infections by carbapenem-resistant Klebsiella pneumoniae (CRKp) represent a challenging problem after SCT. A retrospective survey (January 2010 to July 2013) involving 52 Italian centers was performed to assess the epidemiology and the prognostic factors of CRKp infections in auto- and allo-SCT. Cases of CRKp infection were reported in 53.4% of centers. CRKp infections were documented in 25 auto-SCTs and 87 allo-SCTs, with an incidence of 0.4% (from 0.1% in 2010 to 0.7% in 2013) and 2% (from 0.4% in 2010 to 2.9% in 2013), respectively. A CRKp colonization documented before or after transplant was followed by an infection in 25.8% of auto-SCT and 39.2% of allo-SCT patients. The infection-related mortality rates were 16% and 64.4%, respectively. A pre-transplant CRKp infection (hazard ratio (HR) 0.33, 95% confidence intervals (CIs) 0.15–0.74; P=0.007) and a not CRKp-targeted first-line treatment (HR 2.67, 95% CI 1.43–4.99; P=0.002) were independent factors associated with an increased mortality in allo-SCT patients who developed a CRKp infection. Our study shows challenging findings of CRKp infections in SCT patients in Italy particularly after allo-SCT. The detection of carriers and the definition of early therapeutic strategies represent critical aspects of the management of CRKp infections after SCT.

Collaboration


Dive into the Alice Bertaina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Moretta

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Daria Pagliara

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pietro Merli

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge