Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice C. Layton is active.

Publication


Featured researches published by Alice C. Layton.


Applied and Environmental Microbiology | 2006

Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water

Alice C. Layton; Larry D. McKay; Daniel E. Williams; Victoria Garrett; Randall W. Gentry; Gary S. Sayler

ABSTRACT Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds.


Applied and Environmental Microbiology | 2002

Quantification of Nitrosomonas oligotropha-Like Ammonia- Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR

Hebe M. Dionisi; Alice C. Layton; Gerda Harms; Igrid R. Gregory; Kevin G. Robinson; Gary S. Sayler

ABSTRACT Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.


Microbial Ecology | 1990

Catabolic plasmids of environmental and ecological significance.

Gary S. Sayler; Scott W. Hooper; Alice C. Layton; J. M. Henry King

The environmental and ecological significance of catabolic plasmids and their host strains are discussed in the context of their potential application for environmental biotechnology. Included is a comprehensive list of naturally occurring discrete catabolic plasmids isolated from either natural habitats or selective enrichment studies. General properties, such as plasmid maintenance, stability and transfer, are discussed together with the techniques for plasmid detection and monitoring in the environment. The issues concerning the construction of catabolic strains with new or broader substrate ranges and the uses of monocultures or consortia for in situ treatment are addressed.


Applied and Environmental Microbiology | 2005

Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds

John Sanseverino; Rakesh K. Gupta; Alice C. Layton; Stacey S. Patterson; Steven Ripp; Leslie Saidak; Michael L. Simpson; T. Wayne Schultz; Gary S. Sayler

ABSTRACT An estrogen-inducible bacterial lux-based bioluminescent reporter was developed in Saccharomyces cerevisiae for applications in chemical sensing and environmental assessment of estrogen disruptor activity. The strain, designated S. cerevisiae BLYES, was constructed by inserting tandem estrogen response elements between divergent yeast promoters GPD and ADH1 on pUTK401 (formerly pUA12B7) that constitutively express luxA and luxB to create pUTK407. Cotransformation of this plasmid with a second plasmid (pUTK404) containing the genes required for aldehyde synthesis (luxCDE) and FMN reduction (frp) yielded a bioluminescent bioreporter responsive to estrogen-disrupting compounds. For validation purposes, results with strain BLYES were compared to the colorimetric-based estrogenic assay that uses the yeast lacZ reporter strain (YES). Strains BLYES and YES were exposed to 17β-estradiol over the concentration range of 1.2 × 10−8 through 5.6 × 10−12 M. Calculated 50% effective concentration values from the colorimetric and bioluminescence assays (n = 7) were similar at (4.4 ± 1.1) × 10−10 and (2.4 ± 1.0) × 10−10 M, respectively. The lower and upper limits of detection for each assay were also similar and were approximately 4.5 × 10−11 to 2.8 × 10−9 M. Bioluminescence was observed in as little as 1 h and reached its maximum in 6 h. In comparison, the YES assay required a minimum of 3 days for results. Strain BLYES fills the niche for rapid, high-throughput screening of estrogenic compounds and has the ability to be used for remote, near-real-time monitoring of estrogen-disrupting chemicals in the environment.


Applied and Environmental Microbiology | 2003

Power Analysis for Real-Time PCR Quantification of Genes in Activated Sludge and Analysis of the Variability Introduced by DNA Extraction

Hebe M. Dionisi; Gerda Harms; Alice C. Layton; Igrid R. Gregory; Jack Parker; Shawn A. Hawkins; Kevin G. Robinson; Gary S. Sayler

ABSTRACT The aims of this study were to determine the power of discrimination of the real-time PCR assay for monitoring fluctuations in microbial populations within activated sludge and to identify sample processing points where methodological changes are needed to minimize the variability in target quantification. DNA was extracted using a commercially available kit from mixed liquor samples taken from the aeration tank of four bench-scale activated-sludge reactors operating at 2-, 5-, 10-, and 20-day solid retention times, with mixed-liquor volatile suspended solid (MLVSS) values ranging from 260 to 2,610 mg/liter. Real-time PCR assays for bacterial and Nitrospira 16S rRNA genes were chosen because they represent, respectively, a highly abundant and a less-abundant bacterial target subject to clustering within the activated sludge matrix. The mean coefficient of variation in DNA yields (measured as microgram of DNA per milligram of MLVSS) in triplicate extractions of 12 different samples was 12.2%. Based on power analyses, the variability associated with DNA extraction had a small impact on the overall variability of the real-time PCR assay. Instead, a larger variability was associated with the PCR assay. The less-abundant target (Nitrospira 16S rRNA gene) had more variability than the highly abundant target (bacterial 16S rRNA gene), and samples from the lower-biomass reactors had more variability than samples from the higher-biomass reactors. Power analysis of real-time PCR assays indicated that three to five samples were necessary to detect a twofold increase in bacterial 16S rRNA genes, whereas three to five samples were required to detect a fivefold increase in Nitrospira 16S rRNA genes.


Applied and Environmental Microbiology | 2000

Quantification of Hyphomicrobium Populations in Activated Sludge from an Industrial Wastewater Treatment System as Determined by 16S rRNA Analysis

Alice C. Layton; P. N. Karanth; C. A. Lajoie; Arthur J. Meyers; I. R. Gregory; R. D. Stapleton; D. E. Taylor; Gary S. Sayler

ABSTRACT The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work onHyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained fromHyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T inHyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those ofHyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specificHyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed thatHyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed forHyphomicrobium cluster I and Hyphomicrobiumcluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.


Science of The Total Environment | 2012

Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater

Andrew Ferguson; Alice C. Layton; Brian J. Mailloux; Patricia J. Culligan; Daniel E. Williams; Abby E. Smartt; Gary S. Sayler; John Feighery; Larry D. McKay; Peter S. K. Knappett; Ekaterina Alexandrova; Talia Arbit; Michael Emch; Veronica Escamilla; Kazi Matin Ahmed; Md. Jahangir Alam; P. Kim Streatfield; Mohammad Yunus; Alexander van Geen

Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary.


Toxicological Sciences | 2009

Screening of Potentially Hormonally Active Chemicals Using Bioluminescent Yeast Bioreporters

John Sanseverino; Melanie L. Eldridge; Alice C. Layton; James P. Easter; Jason Yarbrough; T.W. Schultz; Gary S. Sayler

Saccharomyces cerevisiae bioluminescent bioreporter assays were developed previously to assess a chemicals estrogenic or androgenic disrupting potential. S. cerevisiae BLYES, S. cerevisiae BLYAS, S. cerevisiae BLYR, were used to assess their reproducibility and utility in screening 68, 69, and 71 chemicals for estrogenic, androgenic, and toxic effects, respectively. EC(50) values were 6.3 +/- 2.4 x 10(-10)M (n = 18) and 1.1 +/- 0.5 x 10(-8)M (n = 13) for BLYES and BLYAS, using 17beta-estradiol and 5alpha-dihydrotestosterone over concentration ranges of 2.5 x 10(-12) through 1.0 x 10(-6)M, respectively. Based on analysis of replicate standard curves and comparison to background controls, a set of quantitative rules have been formulated to interpret data and determine if a chemical is potentially hormonally active, toxic, both, or neither. The results demonstrated that these assays are applicable for Tier I chemical screening in Environmental Protection Agencys Endocrine Disruptor Screening and Testing Program as well as for monitoring endocrine-disrupting activity of unknown chemicals in water.


Journal of Environmental Quality | 2009

Factors Influencing the Persistence of Fecal Bacteroides in Stream Water

Alyssa Bell; Alice C. Layton; Larry D. McKay; Daniel E. Williams; Randy Gentry; Gary S. Sayler

Laboratory microcosm experiments were used to assess the effects of environmental parameters on the persistence of the Bacteroides 16S rRNA genes derived from equine fecal samples in stream water to investigate the utility of Bacteroides spp. as fecal indicator organisms. Quantitative real-time polymerase chain reaction (qPCR) was used to measure gene concentrations over time with treatments designed to compare filtered vs. unfiltered stream water, fecal aggregate size, initial fecal concentrations, and water temperatures. Comparison of Bacteroides16S rRNA genes/mL in microcosms constructed with unfiltered stream water and filtered stream water indicated that stream water filtration to remove indigenous microorganisms followed by temperature had the largest effects on gene persistence. First-order exponential decay functions were fitted to the data from each microcosm constructed using unfiltered stream water, and the decay constants (k) ranged from 0.0071 h(-1) in the microcosms incubated at 5 degrees C to 0.0336 h(-1) in a set of microcosms incubated at 25 degrees C. Analysis of k calculated from the 10 experimental treatments indicated that k is more highly correlated to temperature than initial Bacteroides 16S rRNA gene starting concentrations. The equation resulting from graphing k (as the dependent variable) vs. temperature (as the independent variable) best fit a peak, Gaussian, 3 parameter function with a maximum decay at 30 degrees C, a r(2) of 0.83 and all parameters were significant (P < 0.0015). Thus this data suggest that factors that reduce biological activity, such as physical removal of stream microorganisms by filtration and low temperature, result in slower Bacteroides 16S rRNA gene decay.


Applied and Environmental Microbiology | 2005

Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

Alice C. Layton; Hebe M. Dionisi; H.-W. Kuo; Kevin G. Robinson; Victoria Garrett; Arthur J. Meyers; Gary S. Sayler

ABSTRACT Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.

Collaboration


Dive into the Alice C. Layton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge