Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice C. Ortmann is active.

Publication


Featured researches published by Alice C. Ortmann.


PLOS ONE | 2010

Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function.

William P. Inskeep; Douglas B. Rusch; Zackary J. Jay; Markus J. Herrgård; Mark A. Kozubal; Toby Richardson; Richard E. Macur; Natsuko Hamamura; Ryan deM. Jennings; Bruce W. Fouke; Anna-Louise Reysenbach; Frank Roberto; Mark J. Young; Ariel Schwartz; Eric S. Boyd; Jonathan H. Badger; Eric J. Mathur; Alice C. Ortmann; Mary M. Bateson; Gill G. Geesey; Marvin Frazier

The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.


PLOS ONE | 2012

Dispersed Oil Disrupts Microbial Pathways in Pelagic Food Webs

Alice C. Ortmann; Jennifer Anders; Naomi Shelton; Limin Gong; Anthony G. Moss; Robert H. Condon

Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.


Frontiers in Microbiology | 2012

Global Analysis of Viral Infection in an Archaeal Model System

Walid S. Maaty; Joseph D. Steffens; Joshua Heinemann; Alice C. Ortmann; Benjamin D. Reeves; Swapan Kumar Biswas; Edward A. Dratz; Paul A. Grieco; Mark J. Young; Brian P Bothner

The origin and evolutionary relationship of viruses is poorly understood. This makes archaeal virus-host systems of particular interest because the hosts generally root near the base of phylogenetic trees, while some of the viruses have clear structural similarities to those that infect prokaryotic and eukaryotic cells. Despite the advantageous position for use in evolutionary studies, little is known about archaeal viruses or how they interact with their hosts, compared to viruses of bacteria and eukaryotes. In addition, many archaeal viruses have been isolated from extreme environments and present a unique opportunity for elucidating factors that are important for existence at the extremes. In this article we focus on virus-host interactions using a proteomics approach to study Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2. Using cultures grown from the ATCC cell stock, a single cycle of STIV infection was sampled six times over a 72 h period. More than 700 proteins were identified throughout the course of the experiments. Seventy one host proteins were found to change their concentration by nearly twofold (p < 0.05) with 40 becoming more abundant and 31 less abundant. The modulated proteins represent 30 different cell pathways and 14 clusters of orthologous groups. 2D gel analysis showed that changes in post-translational modifications were a common feature of the affected proteins. The results from these studies showed that the prokaryotic antiviral adaptive immune system CRISPR-associated proteins (CAS proteins) were regulated in response to the virus infection. It was found that regulated proteins come from mRNAs with a shorter than average half-life. In addition, activity-based protein profiling (ABPP) profiling on 2D-gels showed caspase, hydrolase, and tyrosine phosphatase enzyme activity labeling at the protein isoform level. Together, this data provides a more detailed global view of archaeal cellular responses to viral infection, demonstrates the power of quantitative two-dimensional differential gel electrophoresis and ABPP using 2D gel compatible fluorescent dyes.


FEMS Microbiology Ecology | 2014

Changes in free-living bacterial community diversity reflect the magnitude of environmental variability

Alice C. Ortmann; Natalie Ortell

A 2-year study was undertaken to compare patterns in the diversity of free-living bacteria in a river-dominated estuary and offshore, on the shelf, to determine whether changes in the free-living bacterial community could be related to differences in environmental seasonality and variability. Although the environmental conditions inshore were significantly more variable than those on the shelf and demonstrated clear seasonal patterns, there were no significant differences in the alpha diversity of the communities based on richness, evenness, or phylogenetic diversity. Comparison of communities using Bray-Curtis similarity indicated no significant differences in the magnitude of change between sequential samples from inshore and on the shelf. Seasonal differences were detected both inshore and on the shelf. However, analysis using the weighted UniFrac distance indicated significantly lower overall change between shelf samples with no significant seasonal differences. These findings suggest different patterns of change between the two sites. Inshore, changes in the relative abundance of distantly related bacterial species reflect the larger environmental variability, while on the shelf, changes in the relative abundance of closely related bacterial species or strains may result in a more functionally stable community. Thus, the magnitude of environmental change can alter patterns of bacterial diversity in marine systems.


Molecular Ecology | 2016

Metabarcoding reveals environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes.

Pamela M. Brannock; Alice C. Ortmann; Anthony G. Moss; Kenneth M. Halanych

Marine environments harbour a vast diversity of micro‐eukaryotic organisms (protists and other small eukaryotes) that play important roles in structuring marine ecosystems. However, micro‐eukaryote diversity is not well understood. Likewise, knowledge is limited regarding micro‐eukaryote spatial and seasonal distribution, especially over long temporal scales. Given the importance of this group for mobilizing energy from lower trophic levels near the base of the food chain to larger organisms, assessing community stability, diversity and resilience is important to understand ecosystem health. Herein, we use a metabarcoding approach to examine pelagic micro‐eukaryote communities over a 2.5‐year time series. Bimonthly surface sampling (July 2009 to December 2011) was conducted at four locations within Mobile Bay (Bay) and along the Alabama continental shelf (Shelf). Alpha‐diversity only showed significant differences in Shelf sites, with the greatest differences observed between summer and winter. Beta‐diversity showed significant differences in community composition in relation to season and the Bay was dominated by diatoms, while the Shelf was characterized by dinoflagellates and copepods. The northern Gulf of Mexico is heavily influenced by the Mobile River Basin, which brings low‐salinity nutrient‐rich water mostly during winter and spring. Community composition was correlated with salinity, temperature and dissolved silicate. However, species interactions (e.g. predation and parasitism) may also contribute to the observed variation, especially on the Shelf, which warrants further exploration. Metabarcoding revealed clear patterns in surface pelagic micro‐eukaryote communities that were consistent over multiple years, demonstrating how these techniques could be greatly beneficial to ecological monitoring and management over temporal scales.


Marine Pollution Bulletin | 2014

The Degree of Urbanization Across the Globe is not Reflected in the δ15N of Seagrass Leaves

Bart Christiaen; Rebecca J. Bernard; Behzad Mortazavi; Just Cebrian; Alice C. Ortmann

Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown.


Marine Environmental Research | 2016

Genetic assessment of meiobenthic community composition and spatial distribution in coastal sediments along northern Gulf of Mexico

Pamela M. Brannock; Lei Wang; Alice C. Ortmann; Damien S. Waits; Kenneth M. Halanych

Meiobenthic (meiofauna and micro-eukaryotes) organisms are important contributors to ecosystem functioning in aquatic environments through their roles in nutrient transport, sediment stability, and food web interactions. Despite their ecological importance, information pertaining to variation of these communities at various spatial and temporal scales is not widely known. Many studies in the Gulf of Mexico (GOM) have focused either on deep sea or continental shelf areas, while little attention has been paid to bays and coastal regions. Herein, we take a holistic approach by using high-throughput sequencing approaches to examine spatial variation in meiobenthic communities within Alabama bays and the coastal northern GOM region. Sediment samples were collected along three transects (Mississippi Sound: MS, FOCAL: FT, and Orange Beach: OB) from September 2010 to April 2012 and community composition was determined by metabarcoding the V9 hypervariable region of the nuclear18S rRNA gene. Results showed that Stramenopiles (diatoms), annelids, arthropods (copepods), and nematodes were the dominate groups within samples, while there was presence of other phyla throughout the dataset. Location played a larger role than time sampled in community composition. However, samples were collected over a short temporal scale. Samples clustered in reference to transect, with the most eastern transect (OB) having a distinct community composition in comparison to the other two transects (MS and FT). Communities also differed in reference to region (Bay versus Shelf). Bulk density and percent inorganic carbon were the only measured environmental factors that were correlated with community composition.


FEMS Microbiology Ecology | 2016

Spatial and temporal patterns in the Pelagibacteraceae across an estuarine gradient

Alice C. Ortmann; Thays T. L. Santos

Marine bacterial communities show strong spatial and seasonal patterns, often characterized by changes at high taxonomic levels. The Pelagibacteraceae are common members of bacterial communities, with well-documented biogeography at the subclade level. To identify patterns within the subclades, the abundance and diversity of Pelagibacteraceae were analyzed over a two-year period at four stations across an estuarine gradient. Pelagibacteraceae was the most abundant bacterial family, averaging 27% of the community, but varying from 1% to 57% in any one sample. Highest abundances were detected in autumn and winter. Pelagibacteraceae richness was lowest at the most inshore site, and highest in autumn and winter at all sites. Shannon diversity decreased in winter, when a few OTUs dominated the community. Dissolved oxygen, dissolved silicate and prokaryote abundance explained most of the variability in the Pelagibacteraceae communities, with salinity differentiating low salinity communities. The 10 most abundant OTUs included OTUs that varied across sites, with little seasonality as well as those with small site effects, but strong seasonal patterns indicating differences in the niches of individual OTUs. While salinity was important in structuring low salinity communities, higher salinity communities appear to be responding to additional environmental parameters including oxygen, nutrients and other organisms.


Marine Pollution Bulletin | 2015

Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.

Alice C. Ortmann; Yuehan Lu

Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions.


Microbial Ecology | 2018

River Flow Impacts Bacterial and Archaeal Community Structure in Surface Sediments in the Northern Gulf of Mexico

Alice C. Ortmann; Pamela M. Brannock; Lei Wang; Kenneth M. Halanych

Meiobenthic community structure in the northern Gulf of Mexico has been shown to be driven by geographical differences due to inshore–offshore gradients and location relative to river discharge. Samples collected along three transects spanning Mobile Bay, Alabama, showed significant differences in meiobenthic communities east of the bay compared to those sampled from the west. In contrast, analysis of bacterial and archaeal communities from the same sediment samples shows that the inshore–offshore gradient has minimal impact on their community structure. Significant differences in community structure were observed for Bacteria and Archaea between the east and west samples, but there was no difference in richness or diversity. Grouped by sediment type, higher richness was observed in silty samples compared to sandy samples. Significant differences were also observed among sediment types for community structure with bacteria communities in silty samples having more anaerobic sulfate reducers compared to aerobic heterotrophs, which had higher abundances in sandy sediments. This is likely due to increased organic matter in the silty sediments from the overlying river leading to low oxygen habitats. Most archaeal sequences represented poorly characterized high-level taxa, limiting interpretation of their distributions. Overlap between groups based on transect and sediment characteristics made determining which factor is more important in structuring bacterial and archaeal communities difficult. However, both factors are driven by discharge from the Mobile River. Although inshore–offshore gradients do not affect Bacteria or Archaea to the same extent as the meiobenthic communities, all three groups are strongly affected by sediment characteristics.

Collaboration


Dive into the Alice C. Ortmann's collaboration.

Top Co-Authors

Avatar

Lei Wang

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Robertson

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Christiaen

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Just Cebrian

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge