Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice E. Davidson is active.

Publication


Featured researches published by Alice E. Davidson.


American Journal of Human Genetics | 2009

Missense Mutations in a Retinal Pigment Epithelium Protein, Bestrophin-1, Cause Retinitis Pigmentosa

Alice E. Davidson; I. D. Millar; Jill Urquhart; Rosemary Burgess-Mullan; Yusrah Shweikh; Neil R. A. Parry; James O'Sullivan; Geoffrey J. Maher; Martin McKibbin; Susan M. Downes; Andrew J. Lotery; Samuel G. Jacobson; Peter D. Brown; Graeme C.M. Black; Forbes D.C. Manson

Bestrophin-1 is preferentially expressed at the basolateral membrane of the retinal pigmented epithelium (RPE) of the retina. Mutations in the BEST1 gene cause the retinal dystrophies vitelliform macular dystrophy, autosomal-dominant vitreochoroidopathy, and autosomal-recessive bestrophinopathy. Here, we describe four missense mutations in bestrophin-1, three that we believe are previously unreported, in patients diagnosed with autosomal-dominant and -recessive forms of retinitis pigmentosa (RP). The physiological function of bestrophin-1 remains poorly understood although its heterologous expression induces a Cl--specific current. We tested the effect of RP-causing variants on Cl- channel activity and cellular localization of bestrophin-1. Two (p.L140V and p.I205T) produced significantly decreased chloride-selective whole-cell currents in comparison to those of wild-type protein. In a model system of a polarized epithelium, two of three mutations (p.L140V and p.D228N) caused mislocalization of bestrophin-1 from the basolateral membrane to the cytoplasm. Mutations in bestrophin-1 are increasingly recognized as an important cause of inherited retinal dystrophy.


American Journal of Human Genetics | 2011

Recessive Mutations in KCNJ13, Encoding an Inwardly Rectifying Potassium Channel Subunit, Cause Leber Congenital Amaurosis

Panagiotis I. Sergouniotis; Alice E. Davidson; Donna S. Mackay; Zheng Li; Xu Yang; Vincent Plagnol; Anthony T. Moore; Andrew R. Webster

Inherited retinal degenerations, including retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), comprise a group of disorders showing high genetic and allelic heterogeneity. The determination of a full catalog of genes that can, when mutated, cause human retinal disease is a powerful means to understand the molecular physiology and pathology of the human retina. As more genes are found, remaining ones are likely to be rarer and/or unexpected candidates. Here, we identify a family in which all known RP/LCA-related genes are unlikely to be associated with their disorder. A combination of homozygosity mapping and exome sequencing identifies a homozygous nonsense mutation, c.496C>T (p.Arg166X), in a gene, KCNJ13, encoding a potassium channel subunit Kir7.1. A screen of a further 333 unrelated individuals with recessive retinal degeneration identified an additional proband, homozygous for a missense mutation, c.722T>C (p.Leu241Pro), in the same gene. The three affected members of the two families have been diagnosed with LCA. All have a distinct and unusual retinal appearance and a similar early onset of visual loss, suggesting both impaired retinal development and progressive retinal degeneration, involving both rod and cone pathways. Examination of heterozygotes revealed no ocular disease. This finding implicates Kir7.1 as having an important role in human retinal development and maintenance. This disorder adds to a small diverse group of diseases consequent upon loss or reduced function of inwardly rectifying potassium channels affecting various organs. The distinct retinal phenotype that results from biallelic mutations in KCNJ13 should facilitate the molecular diagnosis in further families.


Human Molecular Genetics | 2012

Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23)

Tom R. Webb; David A. Parfitt; Jessica C. Gardner; Ariadna Martinez; Dalila Bevilacqua; Alice E. Davidson; Ilaria Zito; Jacob Ressa; Marina Apergi; Nele Schwarz; Naheed Kanuga; Michel Michaelides; Michael E. Cheetham; Michael B. Gorin; Alison J. Hardcastle

X-linked retinitis pigmentosa (XLRP) is genetically heterogeneous with two causative genes identified, RPGR and RP2. We previously mapped a locus for a severe form of XLRP, RP23, to a 10.71 Mb interval on Xp22.31-22.13 containing 62 genes. Candidate gene screening failed to identify a causative mutation, so we adopted targeted genomic next-generation sequencing of the disease interval to determine the molecular cause of RP23. No coding variants or variants within or near splice sites were identified. In contrast, a variant deep within intron 9 of OFD1 increased the splice site prediction score 4 bp upstream of the variant. Mutations in OFD1 cause the syndromic ciliopathies orofaciodigital syndrome-1, which is male lethal, Simpson-Golabi-Behmel syndrome type 2 and Joubert syndrome. We tested the effect of the IVS9+706A>G variant on OFD1 splicing in vivo. In RP23 patient-derived RNA, we detected an OFD1 transcript with the insertion of a cryptic exon spliced between exons 9 and 10 causing a frameshift, p.N313fs.X330. Correctly spliced OFD1 was also detected in patient-derived RNA, although at reduced levels (39%), hence the mutation is not male lethal. Our data suggest that photoreceptors are uniquely susceptible to reduced expression of OFD1 and that an alternative disease mechanism can cause XLRP. This disease mechanism of reduced expression for a syndromic ciliopathy gene causing isolated retinal degeneration is reminiscent of CEP290 intronic mutations that cause Leber congenital amaurosis, and we speculate that reduced dosage of correctly spliced ciliopathy genes may be a common disease mechanism in retinal degenerations.


Ophthalmology | 2012

Retinal structure, function, and molecular pathologic features in gyrate atrophy.

Panagiotis I. Sergouniotis; Alice E. Davidson; Eva Lenassi; Sophie Devery; Anthony T. Moore; Andrew R. Webster

PURPOSE To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. DESIGN Retrospective case series. PARTICIPANTS Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. METHODS Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron-exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed. MAIN OUTCOME MEASURES OAT mutation status and resultant clinical, structural, and functional characteristics. RESULTS Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient. CONCLUSIONS Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene.


American Journal of Ophthalmology | 2013

Clinical and Molecular Analysis of Stargardt Disease With Preserved Foveal Structure and Function

Kaoru Fujinami; Panagiotis I. Sergouniotis; Alice E. Davidson; Genevieve A. Wright; Ravinder Chana; Kazushige Tsunoda; Kazuo Tsubota; Catherine Egan; Anthony G. Robson; Anthony T. Moore; Graham E. Holder; Michel Michaelides; Andrew R. Webster

PURPOSE To describe a cohort of patients with Stargardt disease who show a foveal-sparing phenotype. DESIGN Retrospective case series. METHODS The foveal-sparing phenotype was defined as foveal preservation on autofluorescence imaging, despite a retinopathy otherwise consistent with Stargardt disease. Forty such individuals were ascertained and a full ophthalmic examination was undertaken. Following mutation screening of ABCA4, the molecular findings were compared with those of patients with Stargardt disease but no foveal sparing. RESULTS The median age of onset and age at examination of 40 patients with the foveal-sparing phenotype were 43.5 and 46.5 years. The median logMAR visual acuity was 0.18. Twenty-two patients (22/40, 55%) had patchy parafoveal atrophy and flecks; 8 (20%) had numerous flecks at the posterior pole without atrophy; 7 (17.5%) had mottled retinal pigment epithelial changes; 2 (5%) had multiple atrophic lesions, extending beyond the arcades; and 1 (2.5%) had a bulls-eye appearance. The median central foveal thickness assessed with spectral-domain optical coherence tomographic images was 183.0 μm (n = 33), with outer retinal tubulation observed in 15 (45%). Twenty-two of 33 subjects (67%) had electrophysiological evidence of macular dysfunction without generalized retinal dysfunction. Disease-causing variants were found in 31 patients (31/40, 78%). There was a higher prevalence of the variant p.Arg2030Gln in the cohort with foveal sparing compared to the group with foveal atrophy (6.45% vs 1.07%). CONCLUSIONS The distinct clinical and molecular characteristics of patients with the foveal-sparing phenotype are described. The presence of 2 distinct phenotypes of Stargardt disease (foveal sparing and foveal atrophy) suggests that there may be more than 1 disease mechanism in ABCA4 retinopathy.


Journal of Medical Genetics | 2009

ADVIRC is caused by distinct mutations in BEST1 that alter pre-mRNA splicing

Rosemary Burgess; Robert E. MacLaren; Alice E. Davidson; Jill Urquhart; Graham E. Holder; Anthony G. Robson; Antony Moore; Raymond T. O’Keefe; Graeme C.M. Black; Forbes D.C. Manson

Autosomal dominant vitreoretinochoroidopathy (ADVIRC), a retinal dystrophy often associated with glaucoma and cataract, forms part of a phenotypic spectrum of ‘bestrophinopathies’. It has been shown previously that ADVIRC results from BEST1 mutations that cause exon skipping and lead to the production of shortened and internally deleted isoforms. This study describes a novel ADVIRC mutation and show that it disrupts an exonic splice enhancer (ESE) site, altering the binding of a splicing-associated SR protein. As with previous ADVIRC mutations, the novel c.704T→C mutation in exon 6 altered normal splicing in an ex vivo splicing assay. Both this and another exon 6 ADVIRC-causing mutation (c.707G→A) either weakened or abolished splicing in an ESE-dependent splice assay compared with a nearby exon 6 mutation associated with Best disease (c.703G→C). Gel shift assays were undertaken with RNA oligonucleotides encompassing the ADVIRC and Best disease mutations with four of the most commonly investigated SR proteins. Although SC35, SRp40 and SRp55 proteins all bound to the wild-type and mutated sequences with similar intensities, there was increased binding of ASF/SF2 to the two ADVIRC-mutated sequences compared with the wild-type or Best disease-mutated sequences. The exon skipping seen for these two exon 6 ADVIRC mutations and their affinity for ASF/SF2 suggests that the region encompassing these mutations may form part of a CERES (composite exonic regulatory elements of splicing) site.


Human Mutation | 2013

RP1L1 variants are associated with a spectrum of inherited retinal diseases including retinitis pigmentosa and occult macular dystrophy.

Alice E. Davidson; Panagiotis I. Sergouniotis; Donna S. Mackay; Genevieve A. Wright; Naushin Waseem; Michel Michaelides; Graham E. Holder; Anthony G. Robson; Anthony T. Moore; Vincent Plagnol; Andrew R. Webster

In one consanguineous family with retinitis pigmentosa (RP), a condition characterized by progressive visual loss due to retinal degeneration, homozygosity mapping, and candidate gene sequencing suggested a novel locus. Exome sequencing identified a homozygous frameshifting mutation, c.601delG, p.Lys203Argfs*28, in RP1L1 encoding RP 1‐like1, a photoreceptor‐specific protein. A screen of a further 285 unrelated individuals with autosomal recessive RP identified an additional proband, homozygous for a missense variant, c.1637G>C, p.Ser546Thr, in RP1L1. A distinct retinal disorder, occult macular dystrophy (OCMD) solely affects the central retinal cone photoreceptors and has previously been reported to be associated with variants in the same gene. The association between mutations in RP1L1 and the disorder OCMD was explored by screening a cohort of 28 unrelated individuals with the condition; 10 were found to harbor rare (minor allele frequency ≤0.5% in the 1,000 genomes dataset) heterozygous RP1L1 missense variants. Analysis of family members revealed many unaffected relatives harboring the same variant. Linkage analysis excluded the possibility of a recessive mode of inheritance, and sequencing of RP1, a photoreceptor protein that interacts with RP1L1, excluded a digenic mechanism involving this gene. These findings imply an important and diverse role for RP1L1 in human retinal physiology and disease.


Investigative Ophthalmology & Visual Science | 2012

Recessive mutations in TSPAN12 cause retinal dysplasia and severe familial exudative vitreoretinopathy (FEVR).

James A. Poulter; Alice E. Davidson; Manir Ali; David F. Gilmour; David A. Parry; Helen A. Mintz-Hittner; Ian M. Carr; Helen M. Bottomley; Vernon Long; Louise Downey; Panagiotis I. Sergouniotis; Genevieve A. Wright; Robert E. MacLaren; Anthony T. Moore; Andrew R. Webster; Chris F. Inglehearn; Carmel Toomes

PURPOSE Familial exudative vitreoretinopathy (FEVR) is an inherited disorder that disrupts the development of the retinal vasculature and can result in blindness. FEVR is genetically heterogeneous and mutations in four genes, NDP, FZD4, LRP5, and TSPAN12, encoding components of a novel ligand-receptor complex that activates the Norrin-β-catenin signaling pathway, account for approximately 50% of cases. We recently identified mutations in TSPAN12 as a cause of dominant FEVR. The purpose of this study was to identify recessive TSPAN12 mutations in FEVR patients. METHODS Mutation screening was performed by directly sequencing PCR products generated from genomic DNA with primers designed to amplify the coding sequence of TSPAN12. Splicing defects were verified by reverse transcriptase PCR of leukocyte cDNA. RESULTS TSPAN12 screening in a large dominant FEVR family unexpectedly led to the identification of homozygous mutations in severely affected family members, whereas mildly affected family members were heterozygous. Further screening in a cohort of 10 retinal dysplasia/severe FEVR patients identified an additional three cases with recessive TSPAN12 mutations. In all examined cases, single mutation carriers were mildly affected compared to patients harboring two TSPAN12 mutations. CONCLUSIONS We report for the first time recessive mutations in TSPAN12 and describe the first genetic cause for the clinical variation seen in FEVR families. Our data raise the possibility that patients with severe FEVR actually may harbor two mutant alleles, derived either from the same gene or potentially from other genes encoding components of the Norrin-β-catenin signaling pathway.


American Journal of Human Genetics | 2013

Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa

Alice E. Davidson; Nele Schwarz; Lina Zelinger; Gabriele Stern-Schneider; Amelia Shoemark; Benjamin Spitzbarth; Menachem Gross; Uri Laxer; Jacob Sosna; Panagiotis I. Sergouniotis; Naushin Waseem; Rob Wilson; Richard A. Kahn; Vincent Plagnol; Uwe Wolfrum; Eyal Banin; Alison J. Hardcastle; Michael E. Cheetham; Dror Sharon; Andrew R. Webster

Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101-1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated centriole of photoreceptors and the periciliary extension of the inner segment. Depletion of ARL2BP caused cilia shortening. Moreover, depletion of ARL2, but not ARL3, caused displacement of ARL2BP from the basal body, suggesting that ARL2 is vital for recruiting or anchoring ARL2BP at the base of the cilium. This hypothesis is supported by the finding that the p.Met45Arg amino acid substitution reduced binding to ARL2 and caused the loss of ARL2BP localization at the basal body in ciliated nasal epithelial cells. These data demonstrate a role for ARL2BP and ARL2 in primary cilia function and that this role is essential for normal photoreceptor maintenance and function.


Investigative Ophthalmology & Visual Science | 2011

Functional characterization of bestrophin-1 missense mutations associated with autosomal recessive bestrophinopathy.

Alice E. Davidson; I. D. Millar; Rosemary Burgess-Mullan; Geoffrey J. Maher; Jill Urquhart; Peter D. Brown; Graeme C.M. Black; Forbes D.C. Manson

PURPOSE Autosomal recessive bestrophinopathy (ARB) is a retinal dystrophy affecting macular and retinal pigmented epithelium function resulting from homozygous or compound heterozygous mutations in BEST1. In this study we characterize the functional implications of missense bestrophin-1 mutations that cause ARB by investigating their effect on bestrophin-1s chloride conductance, cellular localization, and stability. METHODS The chloride conductance of wild-type bestropin-1 and a series of ARB mutants were determined by whole-cell patch-clamping of transiently transfected HEK cells. The effect of ARB mutations on the cellular localization of bestrophin-1 was determined by confocal immunofluorescence on transiently transfected MDCK II cells that had been polarized on Transwell filters. Protein stability of wild-type and ARB mutant forms of bestrophin-l was determined by the addition of proteasomal or lysosomal inhibitors to transiently transfected MDCK II cells. Lysates were then analyzed by Western blot analysis. RESULTS All ARB mutants investigated produced significantly smaller chloride currents compared to wild-type bestrophin-1. Additionally, co-transfection of compound heterozygous mutants abolished chloride conductance in contrast to co-transfections of a single mutant with wild-type bestrophin-l, reflecting the recessive nature of the condition. In control experiments, expression of two dominant vitelliform macular dystrophy mutants was shown to inhibit wild-type currents. Cellular localization of ARB mutants demonstrated that the majority did not traffic correctly to the plasma membrane and that five of these seven mutants were rapidly degraded by the proteasome. Two ARB-associated mutants (p.D312N and p.V317M) that were not trafficked correctly nor targeted to the proteasome had a distinctive appearance, possibly indicative of aggresome or aggresome-like inclusion bodies. CONCLUSIONS Differences in cellular processing mechanisms for different ARB associated mutants lead to the same disease phenotype. The existence of distinct pathogenic disease mechanisms has important ramifications for potential gene replacement therapies since we show that missense mutations associated with an autosomal recessive disease have a pathogenic influence beyond simple loss of function.

Collaboration


Dive into the Alice E. Davidson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison J. Hardcastle

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Vincent Plagnol

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna S. Mackay

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge