Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Meng is active.

Publication


Featured researches published by Alice Meng.


Cancer Research | 2005

Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs

Ranjit S. Bindra; Shannon L. Gibson; Alice Meng; Ulrica K. Westermark; Maria Jasin; Andrew J. Pierce; Robert G. Bristow; Marie Classon; Peter M. Glazer

Decreased BRCA1 expression in the absence of genetic mutation is observed frequently in sporadic cancers of the breast and other sites, although little is known regarding the mechanisms by which the expression of this gene can be repressed. Here, we show that activating and repressive E2Fs simultaneously bind the BRCA1 promoter at two adjacent E2F sites in vivo, and that hypoxia induces a dynamic redistribution of promoter occupancy by these factors resulting in the transcriptional repression of BRCA1 expression. Functionally, we show that hypoxia is associated with impaired homologous recombination, whereas the nonhomologous end-joining (NHEJ) repair pathway is unaffected under these conditions. Repression of BRCA1 expression by hypoxia represents an intriguing mechanism of functional BRCA1 inactivation in the absence of genetic mutation. We propose that hypoxia-induced decreases in BRCA1 expression and consequent suppression of homologous recombination may lead to genetic instability by shifting the balance between the high-fidelity homologous recombination pathway and the error-prone NHEJ pathway of DNA repair. Furthermore, these findings provide a novel link between E2Fs and the transcriptional response to hypoxia and provide insight into the mechanisms by which the tumor microenvironment can contribute to genetic instability in cancer.


Nature Genetics | 2015

Spatial genomic heterogeneity within localized, multifocal prostate cancer

Paul C. Boutros; Michael Fraser; Nicholas J. Harding; Richard de Borja; Dominique Trudel; Emilie Lalonde; Alice Meng; Pablo H. Hennings-Yeomans; Andrew McPherson; Veronica Y. Sabelnykova; Amin Zia; Natalie S. Fox; Julie Livingstone; Yu Jia Shiah; Jianxin Wang; Timothy Beck; Cherry Have; Taryne Chong; Michelle Sam; Jeremy Johns; Lee Timms; Nicholas Buchner; Ada Wong; John D. Watson; Trent T. Simmons; Christine P'ng; Gaetano Zafarana; Francis Nguyen; Xuemei Luo; Kenneth C. Chu

Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.


Nature | 2017

Genomic hallmarks of localized, non-indolent prostate cancer

Michael Fraser; Veronica Y. Sabelnykova; Takafumi N. Yamaguchi; Lawrence E. Heisler; Julie Livingstone; Vincent Huang; Yu Jia Shiah; Fouad Yousif; Xihui Lin; Andre P. Masella; Natalie S. Fox; Michael Xie; Stephenie D. Prokopec; Alejandro Berlin; Emilie Lalonde; Musaddeque Ahmed; Dominique Trudel; Xuemei Luo; Timothy Beck; Alice Meng; Junyan Zhang; Alister D'Costa; Robert E. Denroche; Haiying Kong; Shadrielle Melijah G. Espiritu; Melvin Lee Kiang Chua; Ada Wong; Taryne Chong; Michelle Sam; Jeremy Johns

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.


Cancer | 2012

Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy

Gaetano Zafarana; Adrian Ishkanian; Chad A. Malloff; Jennifer A. Locke; Jenna Sykes; John Thoms; Wan L. Lam; Jeremy A. Squire; Maisa Yoshimoto; Varune Rohan Ramnarine; Alice Meng; Igor Jurisca; Michael Milosevic; Melania Pintilie; Theo H. van der Kwast; Robert G. Bristow

Despite the use of PSA, Gleason score, and T‐category as prognosticators in intermediate‐risk prostate cancer, 20–40% of patients will fail local therapy. In order to optimize treatment approaches for intermediate‐risk patients, additional genetic prognosticators are needed. Previous reports using array comparative genomic hybridization (aCGH) in radical prostatectomy cohorts suggested a combination of allelic loss of the PTEN gene on 10q and allelic gain of the c‐MYC gene on 8q were associated with metastatic disease. We tested whether copy number alterations (CNAs) in PTEN (allelic loss) and c‐MYC (allelic gain) were associated with biochemical relapse following modern‐era, image‐guided radiotherapy (mean dose 76.4 Gy). We used aCGH analyses validated by fluorescence in‐situ hybridization (FISH) of DNA was derived from frozen, pre‐treatment biopsies in 126 intermediate‐risk prostate cancer patients. Patients whose tumors had CNAs in both PTEN and c‐MYC had significantly increased genetic instability (percent genome alteration; PGA) compared to tumors with normal PTEN and c‐MYC status (p < 0.0001). We demonstrate that c‐MYC gain alone, or combined c‐MYC gain and PTEN loss, were increasingly prognostic for relapse on multivariable analyses (hazard ratios (HR) of 2.58/p = 0.005 and 3.21/p = 0.0004; respectively). Triaging patients by the use of CNAs within pre‐treatment biopsies may allow for better use of systemic therapies to target sub‐clinical metastases or locally recurrent disease and improve clinical outcomes. Cancer 2012.


The Prostate | 2009

High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer

Adrian Ishkanian; Chad Mallof; J. Ho; Alice Meng; Monique Albert; Amena Syed; Theodorus van der Kwast; M. Milosevic; Maisa Yoshimoto; Jeremy A. Squire; Wan L. Lam; Robert G. Bristow

Approximately one‐third of prostate cancer patients present with intermediate risk disease. Interestingly, while this risk group is clinically well defined, it demonstrates the most significant heterogeneity in PSA‐based biochemical outcome. Further, the majority of candidate genes associated with prostate cancer progression have been identified using cell lines, xenograft models, and high‐risk androgen‐independent or metastatic patient samples. We used a global high‐resolution array comparative genomic hybridization (CGH) assay to characterize copy number alterations (CNAs) in intermediate risk prostate cancer. Herein, we show this risk group contains a number of alterations previously associated with high‐risk disease: (1) deletions at 21q22.2 (TMPRSS2:ERG), 16q22–24 (containing CDH1), 13q14.2 (RB1), 10q23.31 (PTEN), 8p21 (NKX3.1); and, (2) amplification at 8q21.3–24.3 (containing c‐MYC). In addition, we identified six novel microdeletions at high frequency: 1q42.12–q42.3 (33.3%), 5q12.3–13.3 (21%), 20q13.32–13.33 (29.2%), 22q11.21 (25%), 22q12.1 (29.2%), and 22q13.31 (33.3%). Further, we show there is little concordance between CNAs from these clinical samples and those found in commonly used prostate cancer cell models. These unexpected findings suggest that the intermediate‐risk category is a crucial cohort warranting further study to determine if a unique molecular fingerprint can predict aggressive versus indolent phenotypes. Prostate 69:1091–1100, 2009.


Annals of the New York Academy of Sciences | 2005

Alterations in DNA Repair Gene Expression under Hypoxia: Elucidating the Mechanisms of Hypoxia‐Induced Genetic Instability

Ranjit S. Bindra; Paul J. Schaffer; Alice Meng; Jennifer Woo; Kårstein Måseide; Matt E. Roth; Paul M. Lizardi; David W. Hedley; Robert G. Bristow; Peter M. Glazer

Abstract: Hypoxia is a common feature of solid tumors and is associated with genetic instability and tumor progression. It has been shown previously that alterations in the expression of DNA repair genes in response to hypoxic stress may account for a proportion of such genetic instability. Here, we demonstrate that the expression of RAD51, a critical mediator of homologous recombination (HR), is repressed by hypoxia in numerous cell lines derived from a wide range of tissues. Repression of this gene by hypoxia occurs in a cell cycle‐ and hypoxia‐inducible factor (HIF)‐independent manner, and decreased RAD51 expression was observed to persist during the post‐hypoxic period. In addition, decreases in Rad51 expression were correlated with functional impairments in HR repair in hypoxic and post‐hypoxic cells. Based on these data, we propose a novel mechanism of hypoxia‐induced genetic instability via suppression of the HR pathway in cancer cells within the tumor microenvironment.


Journal of Cell Science | 2012

Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability

Ramya Kumareswaran; Olga Ludkovski; Alice Meng; Jenna Sykes; Melania Pintilie; Robert G. Bristow

Hypoxic cells have been linked to genetic instability and tumor progression. However, little is known about the exact relationship between DNA repair and genetic instability in hypoxic cells. We therefore tested whether the sensing and repair of DNA double-strand breaks (DNA-dsbs) is altered in irradiated cells kept under continual oxic, hypoxic or anoxic conditions. Synchronized G0–G1 human fibroblasts were irradiated (0–10 Gy) after initial gassing with 0% O2 (anoxia), 0.2% O2 (hypoxia) or 21% O2 (oxia) for 16 hours. The response of phosphorylated histone H2AX (γ-H2AX), phosphorylated ataxia telangiectasia mutated [ATM(Ser1981)], and the p53 binding protein 1 (53BP1) was quantified by intranuclear DNA repair foci and western blotting. At 24 hours following DNA damage, residual γ-H2AX, ATM(Ser1981) and 53BP1 foci were observed in hypoxic cells. This increase in residual DNA-dsbs under hypoxic conditions was confirmed using neutral comet assays. Clonogenic survival was also reduced in chronically hypoxic cells, which is consistent with the observation of elevated G1-associated residual DNA-dsbs. We also observed an increase in the frequency of chromosomal aberrations in chronically hypoxic cells. We conclude that DNA repair under continued hypoxia leads to decreased repair of G1-associated DNA-dsbs, resulting in increased chromosomal instability. Our findings suggest that aberrant DNA-dsb repair under hypoxia is a potential factor in hypoxia-mediated genetic instability.


Clinical Cancer Research | 2012

NKX3.1 Haploinsufficiency Is Prognostic for Prostate Cancer Relapse following Surgery or Image-Guided Radiotherapy

Jennifer A. Locke; Gaetano Zafarana; Adrian Ishkanian; Michael Milosevic; John Thoms; Cherry Have; Chad A. Malloff; Wan L. Lam; Jeremy A. Squire; Melania Pintilie; Jenna Sykes; Varune Rohan Ramnarine; Alice Meng; Omer Ahmed; Igor Jurisica; Theo H. van der Kwast; Robert G. Bristow

Background: Despite the use of prostate specific antigen (PSA), Gleason-score, and T-category as prognostic factors, up to 40% of patients with intermediate-risk prostate cancer will fail radical prostatectomy or precision image-guided radiotherapy (IGRT). Additional genetic prognosticators are needed to triage these patients toward intensified combination therapy with novel targeted therapeutics. We tested the role of the NKX3.1 gene as a determinant of treatment outcome given its reported roles in tumor initiating cell (TIC) renewal, the DNA damage response, and cooperation with c-MYC during prostate cancer progression. Methods: Using high-resolution array comparative genomic hybridization (aCGH), we profiled the copy number alterations in TIC genes using tumor DNA from frozen needle biopsies derived from 126 intermediate-risk patients who underwent IGRT. These data were correlated to biochemical relapse-free rate (bRFR) by the Kaplan–Meier method and Cox proportional hazards models. Results: A screen of the aCGH-IGRT data for TIC genes showed frequent copy number alterations for NKX3.1, PSCA, and c-MYC. NKX3.1 haploinsufficiency was associated with increased genomic instability independent of PSA, T-category, and Gleason-score. After adjusting for clinical factors in a multivariate model, NKX3.1 haploinsufficiency was associated with bRFR when tested alone (HR = 3.05, 95% CI: 1.46–6.39, P = 0.0030) or when combined with c-MYC gain (HR = 3.88, 95% CI: 1.78–8.49, P = 0.00067). A similar association was observed for patients following radical prostatectomy with a public aCGH database. NKX3.1 status was associated with positive biopsies post-IGRT and increased clonogen radioresistance in vitro. Conclusions: Our results support the use of genomic predictors, such as NKX3.1 status, in needle biopsies for personalized approaches to prostate cancer management. Clin Cancer Res; 18(1); 308–16. ©2011 AACR.


Nature Communications | 2017

Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories

Renea A. Taylor; Michael Fraser; Julie Livingstone; Shadrielle Melijah G. Espiritu; Heather Thorne; Vincent Huang; Winnie Lo; Yu Jia Shiah; Takafumi N. Yamaguchi; Ania Sliwinski; Sheri Horsburgh; Alice Meng; Lawrence E. Heisler; Nancy Yu; Fouad Yousif; Melissa Papargiris; Mitchell G. Lawrence; Lee Timms; Declan Murphy; Mark Frydenberg; Julia F. Hopkins; Damien Bolton; David Clouston; John D. McPherson; Theodorus van der Kwast; Paul C. Boutros; Gail P. Risbridger; Robert G. Bristow

Germline mutations in the BRCA2 tumour suppressor are associated with both an increased lifetime risk of developing prostate cancer (PCa) and increased risk of aggressive disease. To understand this aggression, here we profile the genomes and methylomes of localized PCa from 14 carriers of deleterious germline BRCA2 mutations (BRCA2-mutant PCa). We show that BRCA2-mutant PCa harbour increased genomic instability and a mutational profile that more closely resembles metastastic than localized disease. BRCA2-mutant PCa shows genomic and epigenomic dysregulation of the MED12L/MED12 axis, which is frequently dysregulated in metastatic castration-resistant prostate cancer (mCRPC). This dysregulation is enriched in BRCA2-mutant PCa harbouring intraductal carcinoma (IDC). Microdissection and sequencing of IDC and juxtaposed adjacent non-IDC invasive carcinoma in 10 patients demonstrates a common ancestor to both histopathologies. Overall we show that localized castration-sensitive BRCA2-mutant tumours are uniquely aggressive, due to de novo aberration in genes usually associated with metastatic disease, justifying aggressive initial treatment.


Clinical Cancer Research | 2013

TMPRSS2-ERG Status Is Not Prognostic Following Prostate Cancer Radiotherapy: Implications for Fusion Status and DSB Repair

Alan Dal Pra; Emilie Lalonde; Jenna Sykes; Fiona Warde; Adrian Ishkanian; Alice Meng; Chad Maloff; John R. Srigley; Anthony M. Joshua; Gyorgy Petrovics; Theodorus H. van der Kwast; Andrew Evans; Michael Milosevic; Fred Saad; Colin Collins; Jeremy A. Squire; Wan L. Lam; Tarek A. Bismar; Paul C. Boutros; Robert G. Bristow

Background: Preclinical data suggest that TMPRSS2-ERG gene fusions, present in about 50% of prostate cancers, may be a surrogate for DNA repair status and therefore a biomarker for DNA-damaging agents. To test this hypothesis, we examined whether TMPRSS2-ERG status was associated with biochemical failure after clinical induction of DNA damage following image-guided radiotherapy (IGRT). Methods: Pretreatment biopsies from two cohorts of patients with intermediate-risk prostate cancer [T1/T2, Gleason score (GS) < 8, prostate-specific antigen (PSA) < 20 ng/mL; >7 years follow-up] were analyzed: (i) 126 patients [comparative genomic hybridization (CGH) cohort] with DNA samples assayed by array CGH (aCGH) for the TMPRSS2-ERG fusion; and (ii) 118 patients [immunohistochemical (IHC) cohort] whose biopsy samples were scored within a defined tissue microarray (TMA) immunostained for ERG overexpression (known surrogate for TMPRSS2-ERG fusion). Patients were treated with IGRT with a median dose of 76 Gy. The potential role of TMPRSS2-ERG status as a prognostic factor for biochemical relapse-free rate (bRFR; nadir + 2 ng/mL) was evaluated in the context of clinical prognostic factors in multivariate analyses using a Cox proportional hazards model. Results: TMPRSS2-ERG fusion by aCGH was identified in 27 (21%) of the cases in the CGH cohort, and ERG overexpression was found in 59 (50%) patients in the IHC cohort. In both cohorts, TMPRSS2-ERG status was not associated with bRFR on univariate or multivariate analysis. Conclusions: In two similarly treated IGRT cohorts, TMPRSS2-ERG status was not prognostic for bRFR, in disagreement with the hypothesis that these prostate cancers have DNA repair defects that render them clinically more radiosensitive. TMPRSS2-ERG is therefore unlikely to be a predictive factor for IGRT response. Clin Cancer Res; 19(18); 5202–9. ©2013 AACR.

Collaboration


Dive into the Alice Meng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Fraser

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Paul C. Boutros

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Emilie Lalonde

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Melania Pintilie

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melvin Lee Kiang Chua

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Alejandro Berlin

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Livingstone

Ontario Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge