Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice S. Whittemore is active.

Publication


Featured researches published by Alice S. Whittemore.


Nature | 2009

Finding the missing heritability of complex diseases

Teri A. Manolio; Francis S. Collins; Nancy J. Cox; David B. Goldstein; Lucia A. Hindorff; David J. Hunter; Mark I. McCarthy; Erin M. Ramos; Lon R. Cardon; Aravinda Chakravarti; Judy H. Cho; Alan E. Guttmacher; Augustine Kong; Elaine R. Mardis; Charles N. Rotimi; Montgomery Slatkin; David Valle; Alice S. Whittemore; Michael Boehnke; Andrew G. Clark; Evan E. Eichler; Greg Gibson; Jonathan L. Haines; Trudy F. C. Mackay; Steven A. McCarroll; Peter M. Visscher

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.


Nature | 2009

Common variants on chromosome 6p22.1 are associated with schizophrenia

Jianxin Shi; Douglas F. Levinson; Jubao Duan; Alan R. Sanders; Yonglan Zheng; Itsik Pe'er; Frank Dudbridge; Peter Holmans; Alice S. Whittemore; Bryan J. Mowry; Ann Olincy; Farooq Amin; C. Robert Cloninger; Jeremy M. Silverman; Nancy G. Buccola; William Byerley; Donald W. Black; Raymond R. Crowe; Jorge R. Oksenberg; Daniel B. Mirel; Kenneth S. Kendler; Robert Freedman; Pablo V. Gejman

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5–1%, with high heritability (80–85%) and complex transmission. Recent studies implicate rare, large, high-penetrance copy number variants in some cases, but the genes or biological mechanisms that underlie susceptibility are not known. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended major histocompatibility complex region on chromosome 6. We carried out a genome-wide association study of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium and SGENE data sets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 (P = 9.54 × 10-9). This region includes a histone gene cluster and several immunity-related genes—possibly implicating aetiological mechanisms involving chromatin modification, transcriptional regulation, autoimmunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms.


Nature Genetics | 2007

Multiple regions within 8q24 independently affect risk for prostate cancer

Christopher A. Haiman; Nick Patterson; Matthew L. Freedman; Simon Myers; Malcolm C. Pike; Alicja Waliszewska; Julie Neubauer; Arti Tandon; Christine Schirmer; Gavin J. McDonald; Steven C Greenway; Daniel O. Stram; Loic Le Marchand; Laurence N. Kolonel; Melissa A. Frasco; David Wong; Loreall Pooler; Kristin Ardlie; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Esther M. John; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich

After the recent discovery that common genetic variation in 8q24 influences inherited risk of prostate cancer, we genotyped 2,973 SNPs in up to 7,518 men with and without prostate cancer from five populations. We identified seven risk variants, five of them previously undescribed, spanning 430 kb and each independently predicting risk for prostate cancer (P = 7.9 × 10−19 for the strongest association, and P < 1.5 × 10−4 for five of the variants, after controlling for each of the others). The variants define common genotypes that span a more than fivefold range of susceptibility to cancer in some populations. None of the prostate cancer risk variants aligns to a known gene or alters the coding sequence of an encoded protein.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men

Matthew L. Freedman; Christopher A. Haiman; Nick Patterson; Gavin J. McDonald; Arti Tandon; Alicja Waliszewska; Kathryn L. Penney; Robert Steen; Kristin Ardlie; Esther M. John; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich

A whole-genome admixture scan in 1,597 African Americans identified a 3.8 Mb interval on chromosome 8q24 as significantly associated with susceptibility to prostate cancer [logarithm of odds (LOD) = 7.1]. The increased risk because of inheriting African ancestry is greater in men diagnosed before 72 years of age (P < 0.00032) and may contribute to the epidemiological observation that the higher risk for prostate cancer in African Americans is greatest in younger men (and attenuates with older age). The same region was recently identified through linkage analysis of prostate cancer, followed by fine-mapping. We strongly replicated this association (P < 4.2 × 10−9) but find that the previously described alleles do not explain more than a fraction of the admixture signal. Thus, admixture mapping indicates a major, still-unidentified risk gene for prostate cancer at 8q24, motivating intense work to find it.


Biometrics | 1994

A class of tests for linkage using affected pedigree members

Alice S. Whittemore; Jerry Halpern

We describe a class of nonparametric tests for linkage between a marker and a gene assumed to exist and to govern susceptibility to a disease. The tests are formed by assigning a score to each possible pattern of marker allele sharing (identity-by-descent) among affected pedigree members, and then averaging the scores over all patterns compatible with the observed marker genotype and genealogical relationship of the affected members. Different score functions give different tests. One function, which examines marker allele similarity across pairs of affected pedigree members, gives a test similar to that of Fimmers et al. (1989, in Multipoint Mapping and Linkage Based on Affected Pedigree Members: Genetic Analysis Workshop, R. C. Elston, M. A. Spence, S. E. Hodge, and J. W. MacCluer (eds), 123-128; City: Alan R. Liss). A second function examines allele similarity across arbitrary subsets, not just pairs, of affected members. The resulting test can be more powerful than the one based solely on pairs of affected members. The approach has several advantages: it does not require knowledge of the mode of disease inheritance; it does not require unambiguous determination of identity-by-descent at the marker; it does not suffer from variability due to chance allele similarity among affected members who are unrelated, such as spouses; it allows marker genotypes of unaffected members to contribute information on allele sharing among the affected; it permits calculation of exact P-values. Computational requirements limit the tests to many pedigrees with few (< 16) affected members.


JAMA | 2012

Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

Kelly L. Bolton; Georgia Chenevix-Trench; Cindy Goh; Siegal Sadetzki; Susan J. Ramus; Beth Y. Karlan; Diether Lambrechts; Evelyn Despierre; Daniel Barrowdale; Lesley McGuffog; Sue Healey; Douglas F. Easton; Olga M. Sinilnikova; Javier Benitez; María J. García; Susan L. Neuhausen; Mitchell H. Gail; Patricia Hartge; Susan Peock; Debra Frost; D. Gareth Evans; Rosalind Eeles; Andrew K. Godwin; Mary B. Daly; Ava Kwong; Edmond S K Ma; Conxi Lázaro; Ignacio Blanco; Marco Montagna; Emma D'Andrea

CONTEXT Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear. OBJECTIVE To characterize the survival of BRCA carriers with EOC compared with noncarriers and to determine whether BRCA1 and BRCA2 carriers show similar survival patterns. DESIGN, SETTING, AND PARTICIPANTS A pooled analysis of 26 observational studies on the survival of women with ovarian cancer, which included data from 1213 EOC cases with pathogenic germline mutations in BRCA1 (n = 909) or BRCA2 (n = 304) and from 2666 noncarriers recruited and followed up at variable times between 1987 and 2010 (the median year of diagnosis was 1998). MAIN OUTCOME MEASURE Five-year overall mortality. RESULTS The 5-year overall survival was 36% (95% CI, 34%-38%) for noncarriers, 44% (95% CI, 40%-48%) for BRCA1 carriers, and 52% (95% CI, 46%-58%) for BRCA2 carriers. After adjusting for study and year of diagnosis, BRCA1 and BRCA2 mutation carriers showed a more favorable survival than noncarriers (for BRCA1: hazard ratio [HR], 0.78; 95% CI, 0.68-0.89; P < .001; and for BRCA2: HR, 0.61; 95% CI, 0.50-0.76; P < .001). These survival differences remained after additional adjustment for stage, grade, histology, and age at diagnosis (for BRCA1: HR, 0.73; 95% CI, 0.64-0.84; P < .001; and for BRCA2: HR, 0.49; 95% CI, 0.39-0.61; P < .001). The BRCA1 HR estimate was significantly different from the HR estimated in the adjusted model (P for heterogeneity = .003). CONCLUSION Among patients with invasive EOC, having a germline mutation in BRCA1 or BRCA2 was associated with improved 5-year overall survival. BRCA2 carriers had the best prognosis.


Journal of the National Cancer Institute | 2008

Multiple Loci With Different Cancer Specificities Within the 8q24 Gene Desert

Maya Ghoussaini; Honglin Song; Thibaud Koessler; Ali Amin Al Olama; Zsofia Kote-Jarai; Kristy Driver; Karen A. Pooley; Susan J. Ramus; Susanne K. Kjaer; Estrid Høgdall; Richard A. DiCioccio; Alice S. Whittemore; Simon A. Gayther; Graham G. Giles; Michelle Guy; Stephen M. Edwards; Jonathan Morrison; Jenny Donovan; Freddie C. Hamdy; David P. Dearnaley; Audrey Ardern-Jones; Amanda L. Hall; Lynne T. O'Brien; Beatrice N. Gehr-Swain; Rosemary A. Wilkinson; Paul M. Brown; John L. Hopper; David E. Neal; Paul Pharoah; Bruce A.J. Ponder

Recent studies based on genome-wide association, linkage, and admixture scan analysis have reported associations of various genetic variants in 8q24 with susceptibility to breast, prostate, and colorectal cancer. This locus lies within a 1.18-Mb region that contains no known genes but is bounded at its centromeric end by FAM84B and at its telomeric end by c-MYC, two candidate cancer susceptibility genes. To investigate the associations of specific loci within 8q24 with specific cancers, we genotyped the nine previously reported cancer-associated single-nucleotide polymorphisms across the region in four case-control sets of prostate (1854 case subjects and 1894 control subjects), breast (2270 case subjects and 2280 control subjects), colorectal (2299 case subjects and 2284 control subjects), and ovarian (1975 case subjects and 3411 control subjects) cancer. Five different haplotype blocks within this gene desert were specifically associated with risks of different cancers. One block was solely associated with risk of breast cancer, three others were associated solely with the risk of prostate cancer, and a fifth was associated with the risk of prostate, colorectal, and ovarian cancer, but not breast cancer. We conclude that there are at least five separate functional variants in this region.


Breast Cancer Research | 2004

The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer

Esther M. John; John L. Hopper; Jeanne C. Beck; Julia A. Knight; Susan L. Neuhausen; Ruby T. Senie; Argyrios Ziogas; Irene L. Andrulis; Hoda Anton-Culver; Norman F. Boyd; Saundra S. Buys; Mary B. Daly; Frances P. O'Malley; Regina M. Santella; Melissa C. Southey; Vickie L. Venne; Deon J. Venter; Dee W. West; Alice S. Whittemore; Daniela Seminara

IntroductionThe etiology of familial breast cancer is complex and involves genetic and environmental factors such as hormonal and lifestyle factors. Understanding familial aggregation is a key to understanding the causes of breast cancer and to facilitating the development of effective prevention and therapy. To address urgent research questions and to expedite the translation of research results to the clinical setting, the National Cancer Institute (USA) supported in 1995 the establishment of a novel research infrastructure, the Breast Cancer Family Registry, a collaboration of six academic and research institutions and their medical affiliates in the USA, Canada, and Australia.MethodsThe sites have developed core family history and epidemiology questionnaires, data dictionaries, and common protocols for biospecimen collection and processing and pathology review. An Informatics Center has been established to collate, manage, and distribute core data.ResultsAs of September 2003, 9116 population-based and 2834 clinic-based families have been enrolled, including 2346 families from minority populations. Epidemiology questionnaire data are available for 6779 affected probands (with a personal history of breast cancer), 4116 unaffected probands, and 16,526 relatives with or without a personal history of breast or ovarian cancer. The biospecimen repository contains blood or mouthwash samples for 6316 affected probands, 2966 unaffected probands, and 10,763 relatives, and tumor tissue samples for 4293 individuals.ConclusionThis resource is available to internal and external researchers for collaborative, interdisciplinary, and translational studies of the genetic epidemiology of breast cancer. Detailed information can be found at the URL http://www.cfr.epi.uci.edu/.


Nature Genetics | 2009

A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

Honglin Song; Susan J. Ramus; Jonathan Tyrer; Kelly L. Bolton; Aleksandra Gentry-Maharaj; Eva Wozniak; Hoda Anton-Culver; Jenny Chang-Claude; Daniel W. Cramer; Richard A. DiCioccio; Thilo Dörk; Ellen L. Goode; Marc T. Goodman; Joellen M. Schildkraut; Thomas A. Sellers; Laura Baglietto; Matthias W. Beckmann; Jonathan Beesley; Jan Blaakær; Michael E. Carney; Stephen J. Chanock; Zhihua Chen; Julie M. Cunningham; Ed Dicks; Jennifer A. Doherty; Matthias Dürst; Arif B. Ekici; David Fenstermacher; Brooke L. Fridley; Graham G. Giles

Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk. We performed a genome-wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817 cases and 2,353 controls from the UK and ∼2 million imputed SNPs. We genotyped the 22,790 top ranked SNPs in 4,274 cases and 4,809 controls of European ancestry from Europe, USA and Australia. We identified 12 SNPs at 9p22 associated with disease risk (P < 10−8). The most significant SNP (rs3814113; P = 2.5 × 10−17) was genotyped in a further 2,670 ovarian cancer cases and 4,668 controls, confirming its association (combined data odds ratio (OR) = 0.82, 95% confidence interval (CI) 0.79–0.86, Ptrend = 5.1 × 10−19). The association differs by histological subtype, being strongest for serous ovarian cancers (OR 0.77, 95% CI 0.73–0.81, Ptrend = 4.1 × 10−21).


Journal of Clinical Oncology | 2014

Clinical Evaluation of a Multiple-Gene Sequencing Panel for Hereditary Cancer Risk Assessment

Allison W. Kurian; Emily E. Hare; Meredith Mills; Kerry Kingham; Lisa McPherson; Alice S. Whittemore; Valerie McGuire; Uri Ladabaum; Yuya Kobayashi; Stephen E Lincoln; Michele Cargill; James M. Ford

PURPOSE Multiple-gene sequencing is entering practice, but its clinical value is unknown. We evaluated the performance of a customized germline-DNA sequencing panel for cancer-risk assessment in a representative clinical sample. METHODS Patients referred for clinical BRCA1/2 testing from 2002 to 2012 were invited to donate a research blood sample. Samples were frozen at -80° C, and DNA was extracted from them after 1 to 10 years. The entire coding region, exon-intron boundaries, and all known pathogenic variants in other regions were sequenced for 42 genes that had cancer risk associations. Potentially actionable results were disclosed to participants. RESULTS In total, 198 women participated in the study: 174 had breast cancer and 57 carried germline BRCA1/2 mutations. BRCA1/2 analysis was fully concordant with prior testing. Sixteen pathogenic variants were identified in ATM, BLM, CDH1, CDKN2A, MUTYH, MLH1, NBN, PRSS1, and SLX4 among 141 women without BRCA1/2 mutations. Fourteen participants carried 15 pathogenic variants, warranting a possible change in care; they were invited for targeted screening recommendations, enabling early detection and removal of a tubular adenoma by colonoscopy. Participants carried an average of 2.1 variants of uncertain significance among 42 genes. CONCLUSION Among women testing negative for BRCA1/2 mutations, multiple-gene sequencing identified 16 potentially pathogenic mutations in other genes (11.4%; 95% CI, 7.0% to 17.7%), of which 15 (10.6%; 95% CI, 6.5% to 16.9%) prompted consideration of a change in care, enabling early detection of a precancerous colon polyp. Additional studies are required to quantify the penetrance of identified mutations and determine clinical utility. However, these results suggest that multiple-gene sequencing may benefit appropriately selected patients.

Collaboration


Dive into the Alice S. Whittemore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. DiCioccio

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Susan J. Ramus

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon A. Gayther

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Pharoah

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge