Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Scarpellini is active.

Publication


Featured researches published by Alice Scarpellini.


Journal of the American Chemical Society | 2015

Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

Quinten A. Akkerman; Valerio D’Innocenzo; Sara Accornero; Alice Scarpellini; Annamaria Petrozza; Mirko Prato; Liberato Manna

We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.


ACS Nano | 2015

From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange.

Quinten A. Akkerman; Alessandro Genovese; Chandramohan George; Mirko Prato; Iwan Moreels; Alberto Casu; Sergio Marras; Alberto Curcio; Alice Scarpellini; Teresa Pellegrino; Liberato Manna; Vladimir Lesnyak

We present an approach for the synthesis of ternary copper indium sulfide (CIS) and quaternary copper indium zinc sulfide (CIZS) nanocrystals (NCs) by means of partial cation exchange with In(3+) and Zn(2+). The approach consists of a sequential three-step synthesis: first, binary Cu2S NCs were synthesized, followed by the homogeneous incorporation of In(3+) by an in situ partial cation-exchange reaction, leading to CIS NCs. In the last step, a second partial exchange was performed where Zn(2+) partially replaced the Cu(+) and In(3+) cations at the surface, creating a ZnS-rich shell with the preservation of the size and shape. By careful tuning reaction parameters (growth and exchange times as well as the initial Cu(+):In(3+):Zn(2+) ratios), control over both the size and composition was achieved. This led to a broad tuning of photoluminescence of the final CIZS NCs, ranging from 880 to 1030 nm without altering the NCs size. Cytotoxicity tests confirmed the biocompatibility of the synthesized CIZS NCs, which opens up opportunities for their application as near-infrared fluorescent markers in the biomedical field.


ACS Nano | 2014

Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

Vladimir Lesnyak; Chandramohan George; Alessandro Genovese; Mirko Prato; Alberto Casu; S. Ayyappan; Alice Scarpellini; Liberato Manna

We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.


Nano Letters | 2012

Direct imaging of DNA fibers: the visage of double helix.

Francesco Gentile; Manola Moretti; Tania Limongi; Andrea Falqui; Giovanni Bertoni; Alice Scarpellini; S. Santoriello; Luca Maragliano; Remo Proietti Zaccaria; Enzo Di Fabrizio

Direct imaging becomes important when the knowledge at few/single molecule level is requested and where the diffraction does not allow to get structural and functional information. Here we report on the direct imaging of double stranded (ds) λ-DNA in the A conformation, obtained by combining a novel sample preparation method based on super hydrophobic DNA molecules self-aggregation process with transmission electron microscopy (TEM). The experimental breakthrough is the production of robust and highly ordered paired DNA nanofibers that allowed its direct TEM imaging and the double helix structure revealing.


ACS Applied Materials & Interfaces | 2015

Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water

Asmita A. Chavan; Hongbo Li; Alice Scarpellini; Sergio Marras; Liberato Manna; Athanassia Athanassiou; Despina Fragouli

We report the fabrication and utilization of elastomeric polymer nanocomposite foams for the efficient removal of Pb2+ and Hg2+ heavy metal ions from polluted water. The polydimethylsiloxane (PDMS) foams are properly modified in order to become hydrophilic and allow the polluted water to penetrate in their volume. The ZnSe colloidal nanocrystals (NCs) that decorate the surface of the foams, act as active components able to entrap the metal ions. In this way, after the dipping of the nanocomposite foams in water polluted with Pb2+ or Hg2+, a cation exchange reaction takes place, and the heavy metal ions are successfully removed. The removal capacity for the Pb2+ ions exceeds 98% and the removal of Hg2+ ions approaches almost 100% in the studied concentrations region of 20-40 ppm. The reaction is concluded after 24 h, but it should be noticed that after the first hour, more than 95% of both the metal ions is removed. The color of the foams changes upon heavy metal ions entrapment, providing thus the opportunity of an easy detection of the presence of the ions in water. Taking into account that the fabricated foams provide good elastic properties and resistance to heat, they can be used in different conditions of water remediation.


ACS Nano | 2015

Surface-Structured Bacterial Cellulose with Guided Assembly-Based Biolithography (GAB)

Simone Bottan; Francesco Robotti; Prageeth Jayathissa; Alicia Hegglin; Nicolas Bahamonde; José A. Heredia-Guerrero; Ilker S. Bayer; Alice Scarpellini; Hannes Merker; Nicole Lindenblatt; Dimos Poulikakos; Aldo Ferrari

A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.


ACS Applied Materials & Interfaces | 2015

Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries

Subrahmanyam Goriparti; Ermanno Miele; Mirko Prato; Alice Scarpellini; Sergio Marras; Simone Monaco; Andrea Toma; Gabriele C. Messina; Alessandro Alabastri; Francesco De Angelis; Liberato Manna; Claudio Capiglia; Remo Proietti Zaccaria

Carbon-doped TiO2-bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g(-1) (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g(-1) even at the current rate of 10 C after 1000 charge/discharge cycles.


ACS Nano | 2015

Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands

Markus J. Barthel; Ilaria Angeloni; Alessia Petrelli; Tommaso Avellini; Alice Scarpellini; Giovanni Bertoni; Andrea Armirotti; Iwan Moreels; Teresa Pellegrino

We present the synthesis of colloidally stable ultrasmall (diameter of 1.5 ± 0.6 nm) and fluorescent copper clusters (Cu-clusters) exhibiting outstanding quantum efficiencies (up to 67% in THF and approximately 30% in water). For this purpose, an amphiphilic block copolymer poly(ethylene glycol)-block-poly(propylene sulfide) (MPEG-b-PPS) was synthesized by living anionic ring-opening polymerization. When CuBr is mixed with the living polymer chains in THF, the formation of Cu-clusters is detected by the appearance of the fluorescence. The cluster growth is quenched by the addition of water, followed by THF removal. The structural features of the MPEG-b-PPS copolymer control the cluster formation and the stabilization: the poly(propylene sulfide) segment acts as coordinating and reducing agent for the copper ions in THF, and imparts a hydrophobic character. This hydrophobic block protects the Cu-clusters from water exposure, thus allowing to obtain a stable emission in water. The PEG segment instead provides the hydrophilicity, rendering the Cu-clusters water-soluble. To obtain fluorescent and stable Cu-clusters exhibiting outstanding quantum efficiencies, the removal of the excess of free polymer and copper salt was crucial. The Cu-clusters are also colloidally and optically stable in physiological media and showed bright fluorescence even when taken up by HeLa cells, being noncytotoxic when administered at a Cu dose between 10 nM and 1.6 μM. Given the very small size of the Cu-clusters, localization and fluorescent staining of cell nucleus is achieved, as demonstrated by confocal cell imaging performed at different Cu-cluster doses and at different incubation temperatures.


Materials | 2013

Comparative Study of Loading of Anodic Porous Alumina with Silver Nanoparticles Using Different Methods

Sanjay Thorat; Alberto Diaspro; Alice Scarpellini; Mauro Povia; Marco Salerno

Three different routes were used to infiltrate the pores of anodic porous alumina templates with silver nanoparticles, selected as an example of a bioactive agent. The three methods present a continuous grading from more physical to more chemical character, starting from ex situ filling of the pores with pre-existing particles, moving on to in situ formation of particles in the pores by bare calcination and ending with in situ calcination following specific chemical reactions. The resulting presence of silver inside the pores was assessed by means of energy dispersive X-ray spectroscopy and X-ray diffraction. The number and the size of nanoparticles were evaluated by scanning electron microscopy of functionalized alumina cross-sections, followed by image analysis. It appears that the best functionalization results are obtained with the in situ chemical procedure, based on the prior formation of silver ion complex by means of ammonia, followed by reduction with an excess amount of acetaldehyde. Elution of the silver content from the chemically functionalized alumina into phosphate buffer saline has also been examined, demonstrating a sustained release of silver over time, up to 15 h.


Small | 2014

A DNA Origami Nanorobot Controlled by Nucleic Acid Hybridization

Emanuela Torelli; Monica Marini; Sabrina Palmano; Luca Piantanida; Cesare Polano; Alice Scarpellini; Marco Lazzarino; Giuseppe Firrao

A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators.

Collaboration


Dive into the Alice Scarpellini's collaboration.

Top Co-Authors

Avatar

Mirko Prato

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Athanassia Athanassiou

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Sergio Marras

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Despina Fragouli

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Rosaria Brescia

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Ioannis Liakos

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

M. Colombo

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Liberato Manna

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marco Salerno

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Liberato Manna

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge