Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice T. Shaw is active.

Publication


Featured researches published by Alice T. Shaw.


The New England Journal of Medicine | 2010

Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer.

Eunice L. Kwak; Yung-Jue Bang; D. Ross Camidge; Alice T. Shaw; Benjamin Solomon; Robert G. Maki; Sai-Hong Ignatius Ou; Bruce J. Dezube; Pasi A. Jänne; Daniel B. Costa; Marileila Varella-Garcia; Woo-Ho Kim; Thomas J. Lynch; Panos Fidias; Hannah Stubbs; Jeffrey A. Engelman; Lecia V. Sequist; Weiwei Tan; Leena Gandhi; Mari Mino-Kenudson; Greg C. Wei; S. Martin Shreeve; Mark J. Ratain; Jeffrey Settleman; James G. Christensen; Daniel A. Haber; Keith D. Wilner; Ravi Salgia; Geoffrey I. Shapiro; Jeffrey W. Clark

BACKGROUND Oncogenic fusion genes consisting of EML4 and anaplastic lymphoma kinase (ALK) are present in a subgroup of non-small-cell lung cancers, representing 2 to 7% of such tumors. We explored the therapeutic efficacy of inhibiting ALK in such tumors in an early-phase clinical trial of crizotinib (PF-02341066), an orally available small-molecule inhibitor of the ALK tyrosine kinase. METHODS After screening tumor samples from approximately 1500 patients with non-small-cell lung cancer for the presence of ALK rearrangements, we identified 82 patients with advanced ALK-positive disease who were eligible for the clinical trial. Most of the patients had received previous treatment. These patients were enrolled in an expanded cohort study instituted after phase 1 dose escalation had established a recommended crizotinib dose of 250 mg twice daily in 28-day cycles. Patients were assessed for adverse events and response to therapy. RESULTS Patients with ALK rearrangements tended to be younger than those without the rearrangements, and most of the patients had little or no exposure to tobacco and had adenocarcinomas. At a mean treatment duration of 6.4 months, the overall response rate was 57% (47 of 82 patients, with 46 confirmed partial responses and 1 confirmed complete response); 27 patients (33%) had stable disease. A total of 63 of 82 patients (77%) were continuing to receive crizotinib at the time of data cutoff, and the estimated probability of 6-month progression-free survival was 72%, with no median for the study reached. The drug resulted in grade 1 or 2 (mild) gastrointestinal side effects. CONCLUSIONS The inhibition of ALK in lung tumors with the ALK rearrangement resulted in tumor shrinkage or stable disease in most patients. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


The New England Journal of Medicine | 2013

Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer

Alice T. Shaw; Dong-Wan Kim; Kazuhiko Nakagawa; Takashi Seto; Lucio Crinò; Myung Ju Ahn; Tommaso De Pas; Benjamin Besse; Benjamin Solomon; Fiona Blackhall; Yi-Long Wu; Michael Thomas; Kenneth J. O'Byrne; Denis Moro-Sibilot; D. Ross Camidge; Tony Mok; Vera Hirsh; Gregory J. Riely; Shrividya Iyer; Vanessa Tassell; Anna Polli; Keith D. Wilner; Pasi A. Jänne

BACKGROUND In single-group studies, chromosomal rearrangements of the anaplastic lymphoma kinase gene (ALK) have been associated with marked clinical responses to crizotinib, an oral tyrosine kinase inhibitor targeting ALK. Whether crizotinib is superior to standard chemotherapy with respect to efficacy is unknown. METHODS We conducted a phase 3, open-label trial comparing crizotinib with chemotherapy in 347 patients with locally advanced or metastatic ALK-positive lung cancer who had received one prior platinum-based regimen. Patients were randomly assigned to receive oral treatment with crizotinib (250 mg) twice daily or intravenous chemotherapy with either pemetrexed (500 mg per square meter of body-surface area) or docetaxel (75 mg per square meter) every 3 weeks. Patients in the chemotherapy group who had disease progression were permitted to cross over to crizotinib as part of a separate study. The primary end point was progression-free survival. RESULTS The median progression-free survival was 7.7 months in the crizotinib group and 3.0 months in the chemotherapy group (hazard ratio for progression or death with crizotinib, 0.49; 95% confidence interval [CI], 0.37 to 0.64; P<0.001). The response rates were 65% (95% CI, 58 to 72) with crizotinib, as compared with 20% (95% CI, 14 to 26) with chemotherapy (P<0.001). An interim analysis of overall survival showed no significant improvement with crizotinib as compared with chemotherapy (hazard ratio for death in the crizotinib group, 1.02; 95% CI, 0.68 to 1.54; P=0.54). Common adverse events associated with crizotinib were visual disorder, gastrointestinal side effects, and elevated liver aminotransferase levels, whereas common adverse events with chemotherapy were fatigue, alopecia, and dyspnea. Patients reported greater reductions in symptoms of lung cancer and greater improvement in global quality of life with crizotinib than with chemotherapy. CONCLUSIONS Crizotinib is superior to standard chemotherapy in patients with previously treated, advanced non-small-cell lung cancer with ALK rearrangement. (Funded by Pfizer; ClinicalTrials.gov number, NCT00932893.).


Science Translational Medicine | 2011

Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors

Lecia V. Sequist; Belinda A. Waltman; Dora Dias-Santagata; Subba R. Digumarthy; Alexa B. Turke; P. Fidias; Kristin Bergethon; Alice T. Shaw; Scott N. Gettinger; Arjola K. Cosper; Sara Akhavanfard; Rebecca S. Heist; Jennifer S. Temel; James G. Christensen; John Wain; Thomas J. Lynch; Kathy Vernovsky; Eugene J. Mark; Anthony John Iafrate; Mari Mino-Kenudson; J. A. Engelman

Lung cancers undergo dynamic genetic and histological changes upon developing resistance to EGFR inhibitors. The Shifting Sands of Lung Cancer Lung cancer is the leading cause of death globally and has proven very difficult to treat. The development almost a decade ago of tyrosine kinase inhibitors that specifically block the epidermal growth factor receptor (EGFR), which is switched on in many lung cancers, provided hope that targeted therapies would finally combat this deadly disease. However, only a certain subpopulation of lung cancer patients carrying specific activating mutations in EGFR responded clinically to EGFR inhibitors, and even among these patients, resistance to the inhibitor emerged within 12 months. To better understand how lung cancers develop drug resistance, Sequist and colleagues undertook a comprehensive genetic and histological analysis of 37 patients with non–small cell lung cancer (NSCLC), and they made some surprising discoveries. In an effort to understand the exact mechanism underscoring the acquisition of drug resistance in NSCLC patients treated with EGFR inhibitors, the investigators analyzed tumor biopsies from patients at the time they acquired resistance. All of the lung cancer patients retained their original activating EGFR mutations, but some patients had acquired another mutation in EGFR (T790M), which interferes with binding of the drug to the receptor, rendering the tumors resistant. Meanwhile, another group of patients became resistant because they developed amplification of a gene encoding the MET tyrosine kinase receptor, which, like EGFR, drives cell growth. Yet other patients acquired drug resistance mechanisms that had not been reported before including amplification of the EGFR gene itself and mutations in the PIK3CA gene (which encodes a subunit of the signaling molecule phosphatidylinositol 3-kinase). In addition, the authors observed that a few lung cancers transitioned from an epithelial cell morphology to a mesenchymal cell–like appearance, which is associated with a more aggressive type of tumor. In five patients, the authors discovered another type of transition that was even more surprising: the conversion of NSCLCs into small cell lung cancers (SCLCs), which are easier to treat. Indeed, these five patients responded well to the typical chemotherapy regimen used to treat SCLCs. To study the evolution of lung tumors in patients over the course of their disease, the investigators took serial biopsies from three lung cancer patients over 2 years. They found that when the patients acquired drug resistance and were then taken off the EGFR inhibitor, they lost the resistance mutations and their tumors once again became sensitive to treatment by either the same or a different EGFR inhibitor. The detailed genetic and histological analysis by Sequist and colleagues provides new insights into the shifting sands of drug resistance evolution in lung cancers and suggests that serial biopsies may be essential in the quest to reverse or even prevent the development of drug resistance. Lung cancers harboring mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors, but drug resistance invariably emerges. To elucidate mechanisms of acquired drug resistance, we performed systematic genetic and histological analyses of tumor biopsies from 37 patients with drug-resistant non–small cell lung cancers (NSCLCs) carrying EGFR mutations. All drug-resistant tumors retained their original activating EGFR mutations, and some acquired known mechanisms of resistance including the EGFR T790M mutation or MET gene amplification. Some resistant cancers showed unexpected genetic changes including EGFR amplification and mutations in the PIK3CA gene, whereas others underwent a pronounced epithelial-to-mesenchymal transition. Surprisingly, five resistant tumors (14%) transformed from NSCLC into small cell lung cancer (SCLC) and were sensitive to standard SCLC treatments. In three patients, serial biopsies revealed that genetic mechanisms of resistance were lost in the absence of the continued selective pressure of EGFR inhibitor treatment, and such cancers were sensitive to a second round of treatment with EGFR inhibitors. Collectively, these results deepen our understanding of resistance to EGFR inhibitors and underscore the importance of repeatedly assessing cancers throughout the course of the disease.


Journal of Clinical Oncology | 2009

Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Who Harbor EML4-ALK

Alice T. Shaw; Beow Y. Yeap; Mari Mino-Kenudson; Subba R. Digumarthy; Daniel B. Costa; Rebecca S. Heist; Benjamin Solomon; Hannah Stubbs; Sonal Admane; Ultan McDermott; Jeffrey Settleman; Susumu Kobayashi; Eugene J. Mark; Scott J. Rodig; Lucian R. Chirieac; Eunice L. Kwak; Thomas J. Lynch; A. John Iafrate

PURPOSE The EML4-ALK fusion oncogene represents a novel molecular target in a small subset of non-small-cell lung cancers (NSCLC). To aid in identification and treatment of these patients, we examined the clinical characteristics and treatment outcomes of patients who had NSCLC with and without EML4-ALK. PATIENTS AND METHODS Patients with NSCLC were selected for genetic screening on the basis of two or more of the following characteristics: female sex, Asian ethnicity, never/light smoking history, and adenocarcinoma histology. EML4-ALK was identified by using fluorescent in situ hybridization for ALK rearrangements and was confirmed by immunohistochemistry for ALK expression. EGFR and KRAS mutations were determined by DNA sequencing. RESULTS Of 141 tumors screened, 19 (13%) were EML4-ALK mutant, 31 (22%) were EGFR mutant, and 91 (65%) were wild type (WT/WT) for both ALK and EGFR. Compared with the EGFR mutant and WT/WT cohorts, patients with EML4-ALK mutant tumors were significantly younger (P < .001 and P = .005) and were more likely to be men (P = .036 and P = .039). Patients with EML4-ALK-positive tumors, like patients who harbored EGFR mutations, also were more likely to be never/light smokers compared with patients in the WT/WT cohort (P < .001). Eighteen of the 19 EML4-ALK tumors were adenocarcinomas, predominantly the signet ring cell subtype. Among patients with metastatic disease, EML4-ALK positivity was associated with resistance to EGFR tyrosine kinase inhibitors (TKIs). Patients in the EML4-ALK cohort and the WT/WT cohort showed similar response rates to platinum-based combination chemotherapy and no difference in overall survival. CONCLUSION EML4-ALK defines a molecular subset of NSCLC with distinct clinical characteristics. Patients who harbor this mutation do not benefit from EGFR TKIs and should be directed to trials of ALK-targeted agents.


Journal of Clinical Oncology | 2012

ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers

Kristin Bergethon; Alice T. Shaw; Sai-Hong Ignatius Ou; Ryohei Katayama; Christine M. Lovly; Nerina T. McDonald; Pierre P. Massion; Christina Siwak-Tapp; Adriana Gonzalez; Rong Fang; Eugene J. Mark; Julie M. Batten; Haiquan Chen; Keith D. Wilner; Eunice L. Kwak; Jeffrey W. Clark; David P. Carbone; Hongbin Ji; Jeffrey A. Engelman; Mari Mino-Kenudson; William Pao; A. John Iafrate

PURPOSE Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase gene have recently been described in a subset of non-small-cell lung cancers (NSCLCs). Because little is known about these tumors, we examined the clinical characteristics and treatment outcomes of patients with NSCLC with ROS1 rearrangement. PATIENTS AND METHODS Using a ROS1 fluorescent in situ hybridization (FISH) assay, we screened 1,073 patients with NSCLC and correlated ROS1 rearrangement status with clinical characteristics, overall survival, and when available, ALK rearrangement status. In vitro studies assessed the responsiveness of cells with ROS1 rearrangement to the tyrosine kinase inhibitor crizotinib. The clinical response of one patient with ROS1-rearranged NSCLC to crizotinib was investigated as part of an expanded phase I cohort. RESULTS Of 1,073 tumors screened, 18 (1.7%) were ROS1 rearranged by FISH, and 31 (2.9%) were ALK rearranged. Compared with the ROS1-negative group, patients with ROS1 rearrangements were significantly younger and more likely to be never-smokers (each P < .001). All of the ROS1-positive tumors were adenocarcinomas, with a tendency toward higher grade. ROS1-positive and -negative groups showed no difference in overall survival. The HCC78 ROS1-rearranged NSCLC cell line and 293 cells transfected with CD74-ROS1 showed evidence of sensitivity to crizotinib. The patient treated with crizotinib showed tumor shrinkage, with a near complete response. CONCLUSION ROS1 rearrangement defines a molecular subset of NSCLC with distinct clinical characteristics that are similar to those observed in patients with ALK-rearranged NSCLC. Crizotinib shows in vitro activity and early evidence of clinical activity in ROS1-rearranged NSCLC.


The New England Journal of Medicine | 2014

Ceritinib in ALK-rearranged non-small-cell lung cancer.

Alice T. Shaw; Dong-Wan Kim; Ranee Mehra; Daniel S.W. Tan; Enriqueta Felip; Laura Q. Chow; D. Ross Camidge; Johan Vansteenkiste; Sunil Sharma; Tommaso De Pas; Gregory J. Riely; Benjamin Solomon; Juergen Wolf; Michael Thomas; Martin Schuler; Geoffrey Liu; Armando Santoro; Yvonne Y. Lau; Meredith Goldwasser; Anthony L. Boral; Jeffrey A. Engelman

BACKGROUND Non-small-cell lung cancer (NSCLC) harboring the anaplastic lymphoma kinase gene (ALK) rearrangement is sensitive to the ALK inhibitor crizotinib, but resistance invariably develops. Ceritinib (LDK378) is a new ALK inhibitor that has shown greater antitumor potency than crizotinib in preclinical studies. METHODS In this phase 1 study, we administered oral ceritinib in doses of 50 to 750 mg once daily to patients with advanced cancers harboring genetic alterations in ALK. In an expansion phase of the study, patients received the maximum tolerated dose. Patients were assessed to determine the safety, pharmacokinetic properties, and antitumor activity of ceritinib. Tumor biopsies were performed before ceritinib treatment to identify resistance mutations in ALK in a group of patients with NSCLC who had had disease progression during treatment with crizotinib. RESULTS A total of 59 patients were enrolled in the dose-escalation phase. The maximum tolerated dose of ceritinib was 750 mg once daily; dose-limiting toxic events included diarrhea, vomiting, dehydration, elevated aminotransferase levels, and hypophosphatemia. This phase was followed by an expansion phase, in which an additional 71 patients were treated, for a total of 130 patients overall. Among 114 patients with NSCLC who received at least 400 mg of ceritinib per day, the overall response rate was 58% (95% confidence interval [CI], 48 to 67). Among 80 patients who had received crizotinib previously, the response rate was 56% (95% CI, 45 to 67). Responses were observed in patients with various resistance mutations in ALK and in patients without detectable mutations. Among patients with NSCLC who received at least 400 mg of ceritinib per day, the median progression-free survival was 7.0 months (95% CI, 5.6 to 9.5). CONCLUSIONS Ceritinib was highly active in patients with advanced, ALK-rearranged NSCLC, including those who had had disease progression during crizotinib treatment, regardless of the presence of resistance mutations in ALK. (Funded by Novartis Pharmaceuticals and others; ClinicalTrials.gov number, NCT01283516.).


Lancet Oncology | 2012

Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study

D. Ross Camidge; Yung-Jue Bang; Eunice L. Kwak; A. John Iafrate; Marileila Varella-Garcia; Stephen B. Fox; Gregory J. Riely; Benjamin Solomon; Sai-Hong Ignatius Ou; Dong-Wan Kim; Ravi Salgia; P. Fidias; Jeffrey A. Engelman; Leena Gandhi; Pasi A. Jänne; Daniel B. Costa; Geoffrey I. Shapiro; Patricia LoRusso; Katherine Ruffner; Patricia Stephenson; Yiyun Tang; Keith D. Wilner; Jeffrey W. Clark; Alice T. Shaw

BACKGROUND ALK fusion genes occur in a subset of non-small-cell lung cancers (NSCLCs). We assessed the tolerability and activity of crizotinib in patients with NSCLC who were prospectively identified to have an ALK fusion within the first-in-man phase 1 crizotinib study. METHODS In this phase 1 study, patients with ALK-positive stage III or IV NSCLC received oral crizotinib 250 mg twice daily in 28-day cycles. Endpoints included tumour responses, duration of response, time to tumour response, progression-free survival (PFS), overall survival at 6 and 12 months, and determination of the safety and tolerability and characterisation of the plasma pharmacokinetic profile of crizotinib after oral administration. Responses were analysed in evaluable patients and PFS and safety were analysed in all patients. This study is registered with ClinicalTrials.gov, number NCT00585195. FINDINGS Between Aug 27, 2008, and June 1, 2011, 149 ALK-positive patients were enrolled, 143 of whom were included in the response-evaluable population. 87 of 143 patients had an objective response (60·8%, 95% CI 52·3-68·9), including three complete responses and 84 partial responses. Median time to first documented objective response was 7·9 weeks (range 2·1-39·6) and median duration of response was 49·1 weeks (95% CI 39·3-75·4). The response rate seemed to be largely independent of age, sex, performance status, or line of treatment. Median PFS was 9·7 months (95% CI 7·7-12·8). Median overall survival data are not yet mature, but estimated overall survival at 6 and 12 months was 87·9% (95% CI 81·3-92·3) and 74·8% (66·4-81·5), respectively. 39 patients continued to receive crizotinib for more than 2 weeks after progression because of perceived ongoing clinical benefit from the drug (12 for at least 6 months from the time of their initial investigator-defined disease progression). Overall, 144 (97%) of 149 patients experienced treatment-related adverse events, which were mostly grade 1 or 2. The most common adverse events were visual effects, nausea, diarrhoea, constipation, vomiting, and peripheral oedema. The most common treatment-related grade 3 or 4 adverse events were neutropenia (n=9), raised alanine aminotransferase (n=6), hypophosphataemia (n=6), and lymphopenia (n=6). INTERPRETATION Crizotinib is well tolerated with rapid, durable responses in patients with ALK-positive NSCLC. There seems to be potential for ongoing benefit after initial disease progression in this population, but a more formal definition of ongoing benefit in this context is needed.


Lancet Oncology | 2011

Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis

Alice T. Shaw; Beow Y. Yeap; Benjamin Solomon; Gregory J. Riely; Justin F. Gainor; Jeffrey A. Engelman; Geoffrey I. Shapiro; Daniel B. Costa; Sai-Hong Ignatius Ou; Mohit Butaney; Ravi Salgia; Robert G. Maki; Marileila Varella-Garcia; Robert C. Doebele; Yung-Jue Bang; Kimary Kulig; Paulina Selaru; Yiyun Tang; Keith D. Wilner; Eunice L. Kwak; Jeffrey W. Clark; A. John Iafrate; D. Ross Camidge

BACKGROUND ALK gene rearrangement defines a new molecular subtype of non-small-cell lung cancer (NSCLC). In a recent phase 1 clinical trial, the ALK tyrosine-kinase inhibitor (TKI) crizotinib showed marked antitumour activity in patients with advanced, ALK-positive NSCLC. To assess whether crizotinib affects overall survival in these patients, we did a retrospective study comparing survival outcomes in crizotinib-treated patients in the trial and crizotinib-naive controls screened during the same time period. METHODS We examined overall survival in patients with advanced, ALK-positive NSCLC who enrolled in the phase 1 clinical trial of crizotinib, focusing on the cohort of 82 patients who had enrolled through Feb 10, 2010. For comparators, we identified 36 ALK-positive patients from trial sites who were not given crizotinib (ALK-positive controls), 67 patients without ALK rearrangement but positive for EGFR mutation, and 253 wild-type patients lacking either ALK rearrangement or EGFR mutation. To assess differences in overall survival, we assessed subsets of clinically comparable ALK-positive and ALK-negative patients. FINDINGS Among 82 ALK-positive patients who were given crizotinib, median overall survival from initiation of crizotinib has not been reached (95% CI 17 months to not reached); 1-year overall survival was 74% (95% CI 63-82), and 2-year overall survival was 54% (40-66). Overall survival did not differ based on age, sex, smoking history, or ethnic origin. Survival in 30 ALK-positive patients who were given crizotinib in the second-line or third-line setting was significantly longer than in 23 ALK-positive controls given any second-line therapy (median overall survival not reached [95% CI 14 months to not reached] vs 6 months [4-17], 1-year overall survival 70% [95% CI 50-83] vs 44% [23-64], and 2-year overall survival 55% [33-72] vs 12% [2-30]; hazard ratio 0·36, 95% CI 0·17-0·75; p=0·004). Survival in 56 crizotinib-treated, ALK-positive patients was similar to that in 63 ALK-negative, EGFR-positive patients given EGFR TKI therapy (median overall survival not reached [95% CI 17 months to not reached] vs 24 months [15-34], 1-year overall survival 71% [95% CI 58-81] vs 74% [61-83], and 2-year overall survival 57% [40-71] vs 52% [38-65]; p=0·786), whereas survival in 36 crizotinib-naive, ALK-positive controls was similar to that in 253 wild-type controls (median overall survival 20 months [95% CI 13-26] vs 15 months [13-17]; p=0·244). INTERPRETATION In patients with advanced, ALK-positive NSCLC, crizotinib therapy is associated with improved survival compared with that of crizotinib-naive controls. ALK rearrangement is not a favourable prognostic factor in advanced NSCLC. FUNDING Pfizer Inc, V Foundation for Cancer Research.


The New England Journal of Medicine | 2014

Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer

Alice T. Shaw; Sai-Hong Ignatius Ou; Yung-Jue Bang; D. Ross Camidge; Benjamin Solomon; Ravi Salgia; Gregory J. Riely; Marileila Varella-Garcia; Geoffrey I. Shapiro; Daniel B. Costa; Robert C. Doebele; Long P. Le; Zongli Zheng; Weiwei Tan; Patricia Stephenson; S. Martin Shreeve; Lesley M. Tye; James G. Christensen; Keith D. Wilner; Jeffrey W. Clark; A. John Iafrate

BACKGROUND Chromosomal rearrangements of the gene encoding ROS1 proto-oncogene receptor tyrosine kinase (ROS1) define a distinct molecular subgroup of non-small-cell lung cancers (NSCLCs) that may be susceptible to therapeutic ROS1 kinase inhibition. Crizotinib is a small-molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and another proto-oncogene receptor tyrosine kinase, MET. METHODS We enrolled 50 patients with advanced NSCLC who tested positive for ROS1 rearrangement in an expansion cohort of the phase 1 study of crizotinib. Patients were treated with crizotinib at the standard oral dose of 250 mg twice daily and assessed for safety, pharmacokinetics, and response to therapy. ROS1 fusion partners were identified with the use of next-generation sequencing or reverse-transcriptase-polymerase-chain-reaction assays. RESULTS The objective response rate was 72% (95% confidence interval [CI], 58 to 84), with 3 complete responses and 33 partial responses. The median duration of response was 17.6 months (95% CI, 14.5 to not reached). Median progression-free survival was 19.2 months (95% CI, 14.4 to not reached), with 25 patients (50%) still in follow-up for progression. Among 30 tumors that were tested, we identified 7 ROS1 fusion partners: 5 known and 2 novel partner genes. No correlation was observed between the type of ROS1 rearrangement and the clinical response to crizotinib. The safety profile of crizotinib was similar to that seen in patients with ALK-rearranged NSCLC. CONCLUSIONS In this study, crizotinib showed marked antitumor activity in patients with advanced ROS1-rearranged NSCLC. ROS1 rearrangement defines a second molecular subgroup of NSCLC for which crizotinib is highly active. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


Cancer Cell | 2004

Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects

David A. Tuveson; Alice T. Shaw; Nicholas A. Willis; Daniel P. Silver; Erica L. Jackson; Sandy Chang; Kim L. Mercer; Rebecca Grochow; Hanno Hock; Denise Crowley; Sunil R. Hingorani; Tal Z. Zaks; Catrina King; Michael A. Jacobetz; Lifu Wang; Roderick T. Bronson; Stuart H. Orkin; Ronald A. DePinho; Tyler Jacks

Activating mutations in the ras oncogene are not considered sufficient to induce abnormal cellular proliferation in the absence of cooperating oncogenes. We demonstrate that the conditional expression of an endogenous K-ras(G12D) allele in murine embryonic fibroblasts causes enhanced proliferation and partial transformation in the absence of further genetic abnormalities. Interestingly, K-ras(G12D)-expressing fibroblasts demonstrate attenuation and altered regulation of canonical Ras effector signaling pathways. Widespread expression of endogenous K-ras(G12D) is not tolerated during embryonic development, and directed expression in the lung and GI tract induces preneoplastic epithelial hyperplasias. Our results suggest that endogenous oncogenic ras is sufficient to initiate transformation by stimulating proliferation, while further genetic lesions may be necessary for progression to frank malignancy.

Collaboration


Dive into the Alice T. Shaw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Solomon

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Ross Camidge

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Dong-Wan Kim

Seoul National University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Riely

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge