Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Tadiello is active.

Publication


Featured researches published by Alice Tadiello.


Journal of Experimental Botany | 2009

A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit

Alice Tadiello; Anna Pavanello; Dario Zanin; Elisabetta Caporali; Lucia Colombo; Giuseppe Leonardo Rotino; Livio Trainotti; Giorgio Casadoro

MADS-box genes have been shown to play a role in the formation of fruits, both in Arabidopsis and in tomato. In peach, two C-class MADS-box genes have been isolated. Both of them are expressed during flower and mesocarp development. Here a detailed analysis of a gene that belongs to the PLENA subfamily of MADS-box genes is shown. The expression of this PLENA-like gene (PpPLENA) increases during fruit ripening, and its ectopic expression in tomato plants causes the transformation of sepals into carpel-like structures that become fleshy and ripen like real fruits. Interestingly, the transgenic berries constitutively expressing the PpPLENA gene show an accelerated ripening, as judged by the expression of genes that are important for tomato fruit ripening. It is suggested that PpPLENA might interfere with the endogenous activity of TAGL1, thereby activating the fruit ripening pathway earlier compared with wild-type tomato plants.


BMC Plant Biology | 2011

A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach

Claudio Bonghi; Livio Trainotti; Alessandro Botton; Alice Tadiello; Angela Rasori; F. Ziliotto; Valerio Zaffalon; Giorgio Casadoro; Angelo Ramina

BackgroundField observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR) was used to study this process.ResultsA comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia) throughout different developmental stages (S1, S2, S3 and S4) evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein), a PR (pathogenesis-related) protein, a prunin and LEA (Late Embryogenesis Abundant) protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively.The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin) or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on.ConclusionsIn this research, genes were identified marking different phases of seed and mesocarp development. The selected genes behaved as good seed markers, while for mesocarp their reliability appeared to be dependent upon developmental and ripening traits. Regarding the cross-talk between seed and pericarp, possible candidate signals were identified among hormones.Further investigations relying upon the availability of whole genome platforms will allow the enrichment of a marker genes repertoire and the elucidation of players other than hormones that are involved in seed-pericarp cross-talk (i.e. hormone peptides and microRNAs).


PLOS ONE | 2013

A Multidisciplinary Approach Providing New Insight into Fruit Flesh Browning Physiology in Apple (Malus x domestica Borkh.)

Mario Di Guardo; Alice Tadiello; Brian Farneti; Giorgia Lorenz; Domenico Masuero; Urska Vrhovsek; Guglielmo Costa; Riccardo Velasco; Fabrizio Costa

In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the ‘Golden Delicious’ apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies (‘Fuji x Pink Lady’ and ‘Golden Delicious x Braeburn’). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple.


Physiologia Plantarum | 2012

Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling.

Patrizia Torrigiani; Daniela Bressanin; Karina B. Ruiz; Alice Tadiello; Livio Trainotti; Claudio Bonghi; Vanina Ziosi; Guglielmo Costa

Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways.


Molecular Biology and Evolution | 2012

Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits

Alessandro Lovisetto; Flavia Guzzo; Alice Tadiello; Ketti Toffali; Alessandro Favretto; Giorgio Casadoro

Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.


BMC Plant Biology | 2014

Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus x domestica Borkh)

Nicola Busatto; Brian Farneti; Alice Tadiello; Urska Vrhovsek; Luca Cappellin; Franco Biasioli; Riccardo Velasco; Guglielmo Costa; Fabrizio Costa

BackgroundFruit quality features resulting from ripening processes need to be preserved throughout storage for economical reasons. However, during this period several physiological disorders can occur, of which superficial scald is one of the most important, due to the development of large brown areas on the fruit skin surface.ResultsThis study examined the variation in polyphenolic content with the progress of superficial scald in apple, also with respect to 1-MCP, an ethylene competitor interacting with the hormone receptors and known to interfere with this etiology. The change in the accumulation of these metabolites was further correlated with the gene set involved in this pathway, together with two specific VOCs (Volatile Organic Compounds), α-farnesene and its oxidative form, 6-methyl-5-hepten-2-one. Metabolite profiling and qRT-PCR assay showed these volatiles are more heavily involved in the signalling system, while the browning coloration would seem to be due more to a specific accumulation of chlorogenic acid (as a consequence of the activation of MdPAL and MdC3H), and its further oxidation carried out by a polyphenol oxidase gene (MdPPO). In this physiological scenario, new evidence regarding the involvement of an anti-apoptotic regulatory mechanism for the compartmentation of this phenomenon in the skin alone was also hypothesized, as suggested by the expression profile of the MdDAD1, MdDND1 and MdLSD1 genes.ConclusionsThe results presented in this work represent a step forward in understanding the physiological mechanisms of superficial scald in apple, shedding light on the regulation of the specific physiological cascade.


BMC Plant Biology | 2016

On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening

Alice Tadiello; Vanina Ziosi; Alfredo Simone Negri; Massimo Noferini; Giovanni Fiori; Nicola Busatto; Luca Espen; Guglielmo Costa; Livio Trainotti

BackgroundIn melting flesh peaches, auxin is necessary for system-2 ethylene synthesis and a cross-talk between ethylene and auxin occurs during the ripening process. To elucidate this interaction at the transition from maturation to ripening and the accompanying switch from system-1 to system-2 ethylene biosynthesis, fruits of melting flesh and stony hard genotypes, the latter unable to produce system-2 ethylene because of insufficient amount of auxin at ripening, were treated with auxin, ethylene and with 1-methylcyclopropene (1-MCP), known to block ethylene receptors. The effects of the treatments on the different genotypes were monitored by hormone quantifications and transcription profiling.ResultsIn melting flesh fruit, 1-MCP responses differed according to the ripening stage. Unexpectedly, 1-MCP induced genes also up-regulated by ripening, ethylene and auxin, as CTG134, similar to GOLVEN (GLV) peptides, and repressed genes also down-regulated by ripening, ethylene and auxin, as CTG85, a calcineurin B-like protein.The nature and transcriptional response of CTG134 led to discover a rise in free auxin in 1-MCP treated fruit. This increase was supported by the induced transcription of CTG475, an IAA-amino acid hydrolase. A melting flesh and a stony hard genotype, differing for their ability to synthetize auxin and ethylene amounts at ripening, were used to study the fine temporal regulation and auxin responsiveness of genes involved in the process. Transcriptional waves showed a tight interdependence between auxin and ethylene actions with the former possibly enhanced by the GLV CTG134. The expression of genes involved in the regulation of ripening, among which are several transcription factors, was similar in the two genotypes or could be rescued by auxin application in the stony hard. Only GLV CTG134 expression could not be rescued by exogenous auxin.Conclusions1-MCP treatment of peach fruit is ineffective in delaying ripening because it stimulates an increase in free auxin. As a consequence, a burst in ethylene production speeding up ripening occurs. Based on a network of gene transcriptional regulations, a model in which appropriate level of CTG134 peptide hormone might be necessary to allow the correct balance between auxin and ethylene for peach ripening to occur is proposed.


Plant Journal | 2016

Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.)

Alice Tadiello; Sara Longhi; Marco Moretto; Alberto Ferrarini; Paola Tononi; Brian Farneti; Nicola Busatto; Urska Vrhovsek; Alessandra Dal Molin; C. Avanzato; Franco Biasioli; Luca Cappellin; Matthias Scholz; Riccardo Velasco; Livio Trainotti; Massimo Delledonne; Fabrizio Costa

Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors.


Journal of Experimental Botany | 2017

Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association

Mario Di Guardo; Marco C. A. M. Bink; Walter Guerra; Thomas Letschka; Lidia Lozano; Nicola Busatto; Lara Poles; Alice Tadiello; Luca Bianco; Richard G. F. Visser; Eric van de Weg; Fabrizio Costa

Highlight A distinct set of QTLs related to mechanical and acoustic fruit texture features were identified in apple. Through a GWAS approach, the specific genetic control of these subtraits was elucidated.


Plant Physiology and Biochemistry | 2013

Characterization of a bZIP gene highly expressed during ripening of the peach fruit.

Alessandro Lovisetto; Flavia Guzzo; Alice Tadiello; Enrico Confortin; Anna Pavanello; Alessandro Botton; Giorgio Casadoro

A ripening specific bZIP gene of peach was studied by ectopically expressing it in tomato. Two lines, with either a mild or a strong phenotype, respectively, were analyzed in detail. Transgenic fruit morphology was normal, yet the time spent to proceed through the various ripening stages was longer compared to wild type. In agreement with this finding the transgenic berries produced less ethylene, and also had a modified expression of some ripening-related genes that was particularly evident in berries with a strong phenotype. In particular, in the latter fruits polygalacturonase and lipoxygenase genes, but also genes coding for transcription factors (TFs) important for tomato ripening (i.e. TAGL1, CNR, APETALA2a, NOR) did not show the expected decreased expression in the red berries. As regards the RIN gene, its expression continued to increase in both mild and strong lines, and this is in agreement with the dilated ripening times. Interestingly, a metabolomic analysis of berries at various stages of ripening showed that the longer time spent by the transgenic berries to proceed from a stage to another was not due to a slackened metabolism. In fact, the differences in amount of stage-specific marker metabolites indicated that the transgenic berries had a very active metabolism. Therefore, the dilated ripening and the enhanced metabolism of the berries over-expressing the bZIP gene suggest that such gene might regulate ripening by acting as a pacemaker for some of the ripening metabolic pathways.

Collaboration


Dive into the Alice Tadiello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Tonutti

Sant'Anna School of Advanced Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge