Alice Valentini
Joseph Fourier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alice Valentini.
Trends in Ecology and Evolution | 2009
Alice Valentini; François Pompanon; Pierre Taberlet
DNA barcoding - taxon identification using a standardized DNA region - has received much attention recently, and is being further developed through an international initiative. We anticipate that DNA barcoding techniques will be increasingly used by ecologists. They will be able to not only identify a single species from a specimen or an organisms remains but also determine the species composition of environmental samples. Short DNA fragments persist in the environment and might allow an assessment of local biodiversity from soil or water. Even DNA-based diet composition can be estimated using fecal samples. Here we review the new avenues offered to ecologists by DNA barcoding, particularly in the context of new sequencing technologies.
Nucleic Acids Research | 2007
Pierre Taberlet; Eric Coissac; François Pompanon; Ludovic Gielly; Christian Miquel; Alice Valentini; Thierry Vermat; Gérard Corthier; Christian Brochmann; Eske Willerslev
DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trnL (UAA) intron (254–767 bp) and of a shorter fragment of this intron (the P6 loop, 10–143 bp) amplified with highly conserved primers. The main limitation of the whole trnL intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trnL intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies.DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trn L (UAA) intron (254-767 bp) and of a shorter fragment of this intron (the P6 loop, 10-143 bp) amplified with highly conserved primers. The main limitation of the whole trn L intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trn L intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies.
Molecular Ecology Resources | 2009
Alice Valentini; Christian Miquel; Muhammad Ali Nawaz; Eva Bellemain; Eric Coissac; François Pompanon; Ludovic Gielly; Corinne Cruaud; Giuseppe Nascetti; Patrick Wincker; Jon E. Swenson; Pierre Taberlet
The development of DNA barcoding (species identification using a standardized DNA sequence), and the availability of recent DNA sequencing techniques offer new possibilities in diet analysis. DNA fragments shorter than 100–150 bp remain in a much higher proportion in degraded DNA samples and can be recovered from faeces. As a consequence, by using universal primers that amplify a very short but informative DNA fragment, it is possible to reliably identify the plant taxon that has been eaten. According to our experience and using this identification system, about 50% of the taxa can be identified to species using the trnL approach, that is, using the P6 loop of the chloroplast trnL (UAA) intron. We demonstrated that this new method is fast, simple to implement, and very robust. It can be applied for diet analyses of a wide range of phytophagous species at large scales. We also demonstrated that our approach is efficient for mammals, birds, insects and molluscs. This method opens new perspectives in ecology, not only by allowing large‐scale studies on diet, but also by enhancing studies on resource partitioning among competing species, and describing food webs in ecosystems.
PLOS ONE | 2011
Tony Dejean; Alice Valentini; Antoine Duparc; Stéphanie Pellier-Cuit; François Pompanon; Pierre Taberlet; Claude Miaud
The precise knowledge of species distribution is a key step in conservation biology. However, species detection can be extremely difficult in many environments, specific life stages and in populations at very low density. The aim of this study was to improve the knowledge on DNA persistence in water in order to confirm the presence of the focus species in freshwater ecosystems. Aquatic vertebrates (fish: Siberian sturgeon and amphibian: Bullfrog tadpoles) were used as target species. In control conditions (tanks) and in the field (ponds), the DNA detectability decreases with time after the removal of the species source of DNA. DNA was detectable for less than one month in both conditions. The density of individuals also influences the dynamics of DNA detectability in water samples. The dynamics of detectability reflects the persistence of DNA fragments in freshwater ecosystems. The short time persistence of detectable amounts of DNA opens perspectives in conservation biology, by allowing access to the presence or absence of species e.g. rare, secretive, potentially invasive, or at low density. This knowledge of DNA persistence will greatly influence planning of biodiversity inventories and biosecurity surveys.
Frontiers in Zoology | 2009
Eeva M. Soininen; Alice Valentini; Eric Coissac; Christian Miquel; Ludovic Gielly; Christian Brochmann; Anne K. Brysting; J. H. Sønstebø; Rolf A. Ims; Nigel G. Yoccoz; Pierre Taberlet
BackgroundIn order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing) DNA barcoding technology for plant mixture with traditional microhistological method. We analysed stomach contents of two ecologically important subarctic vole species, Microtus oeconomus and Myodes rufocanus, with the two methods. DNA barcoding was conducted using the P6-loop of the chloroplast trn L (UAA) intron.ResultsAlthough the identified plant taxa in the diets matched relatively well between the two methods, DNA barcoding gave by far taxonomically more detailed results. Quantitative comparison of results was difficult, mainly due to low taxonomic resolution of the microhistological method, which also in part explained discrepancies between the methods. Other discrepancies were likely due to biases mostly in the microhistological analysis.ConclusionWe conclude that DNA barcoding opens up for new possibilities in the study of plant-herbivore interactions, giving a detailed and relatively unbiased picture of food utilization of herbivores.
Molecular Ecology | 2016
Alice Valentini; Pierre Taberlet; Claude Miaud; Raphaël Civade; Jelger Herder; Philip Francis Thomsen; Eva Bellemain; Aurélien Besnard; Eric Coissac; Frédéric Boyer; Coline Gaboriaud; Pauline Jean; Nicolas Poulet; Nicolas Roset; Gordon H. Copp; Philippe Geniez; Didier Pont; Christine Argillier; Jean‐Marc Baudoin; Tiphaine Peroux; Alain J. Crivelli; Anthony Olivier; Manon Acqueberge; Matthieu Le Brun; Peter Möller; Tony Dejean
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
Molecular Ecology | 2008
Pierre Taberlet; Alice Valentini; Hamid-Reza Rezaei; Saeid Naderi; François Pompanon; Riccardo Negrini; Paolo Ajmone-Marsan
For about 10 000 years, farmers have been managing cattle, sheep, and goats in a sustainable way, leading to animals that are well adapted to the local conditions. About 200 years ago, the situation started to change dramatically, with the rise of the concept of breed. All animals from the same breed began to be selected for the same phenotypic characteristics, and reproduction among breeds was seriously reduced. This corresponded to a strong fragmentation of the initial populations. A few decades ago, the selection pressures were increased again in order to further improve productivity, without enough emphasis on the preservation of the overall genetic diversity. The efficiency of modern selection methods successfully increased the production, but with a dramatic loss of genetic variability. Many industrial breeds now suffer from inbreeding, with effective population sizes falling below 50. With the development of these industrial breeds came economic pressure on farmers to abandon their traditional breeds, and many of these have recently become extinct as a result. This means that genetic resources in cattle, sheep, and goats are highly endangered, particularly in developed countries. It is therefore important to take measures that promote a sustainable management of these genetic resources; first, by in situ preservation of endangered breeds; second, by using selection programmes to restore the genetic diversity of industrial breeds; and finally, by protecting the wild relatives that might provide useful genetic resources.
Molecular Ecology | 2012
Nigel G. Yoccoz; Kari Anne Bråthen; Ludovic Gielly; James Haile; Mary E. Edwards; Tomasz Goslar; H. Von Stedingk; Anne K. Brysting; Eric Coissac; François Pompanon; J. H. Sønstebø; Christian Miquel; Alice Valentini; F. de Bello; Jérôme Chave; Wilfried Thuiller; Patrick Wincker; Corinne Cruaud; F. Gavory; Marianne Rasmussen; M.T.P. Gilbert; Ludovic Orlando; Christian Brochmann; Pierre Taberlet
Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually <100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant taxonomic and growth form diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that the number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site were efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches.
Journal of Applied Ecology | 2014
Anne Tréguier; Jean-Marc Paillisson; Tony Dejean; Alice Valentini; Martin A. Schlaepfer; Jean-Marc Roussel
1. The introduction of non-native species is a major threat to biodiversity. While eradication programs of well-established invaders are costly and hazardous for non-target species, the early detection of a non-native species at low density is critical for preventing biological invasions in recipient ecosystems. Recent studies reveal that environmental DNA (eDNA) is a powerful tool for detecting target species in aquatic ecosystems, but these studies focus mostly on fish and amphibians.2. We examine the reliability of using eDNA to detect the presence of an invasive freshwater crustacean species, the red swamp crayfish Procambarus clarkii. Species-specific primers and probes were designed; their specificity was tested using in silico PCR simulations and against tissues of other crayfish species. Limits of detection and quantification were specified for the target DNA sequence by means of quantitative PCR amplifications on dilution series of known amount of P. clarkii DNA.3. The method was applied to water samples collected in 158 ponds in a French Nature Park, and results were compared to a traditional method using food-baited funnel traps. Environmental DNA had a better detection efficiency but predominantly led to divergent results compared with the trapping method. While habitat features partly explained the failure of crayfish detection by trapping, detection by eDNA was problematic at low crayfish abundances. When P. clarkii was detected, the estimated concentrations of crayfish DNA in water samples were always below the limit of quantification for the target DNA sequence.4. Synthesis and applications. The combination of environmental DNA (eDNA) and conventional trapping methods is recommended to monitor the invasion by P. clarkii in small waterbodies such as ponds. However, the risk of mortality for non-target species, notably amphibians, has to be carefully evaluated before large-scale deployment of traps. Contrary to fish and amphibians, a low amount of extracellular DNA in water is suspected to be the major limitation for crayfish detection by molecular approaches. Current advancements in PCR technology, together with optimization of the water sampling method, promise upcoming developments of eDNA detection for aquatic invertebrate species.
Journal of Agricultural and Food Chemistry | 2009
Anthony Pegard; Christian Miquel; Alice Valentini; Eric Coissac; Frédéric Bouvier; Dominique François; Pierre Taberlet; Erwan Engel; François Pompanon
Because of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product. The second method consists of sequencing several hundred DNA fragments from the PCR product through pyrosequencing. These methods were validated with a blind analysis of feces from concentrate- and pasture-fed lambs. The signature method allowed differentiation of the two diets and confirmed the presence of concentrate in one of them. The pyrosequencing method allowed the identification of up to 25 taxa in a diet. These methods are complementary to the chemical methods already used. They could be applied to the control of diets and the study of food preferences.