Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Y. Cheung is active.

Publication


Featured researches published by Alice Y. Cheung.


Cell | 1995

A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth

Alice Y. Cheung; Hong Wang; Hen-ming Wu

Pollen tubes elongate directionally in the extracellular matrix of pistil tissues to transport the male gametes from the apically located stigma to the basally located ovary for fertilization. The molecular mechanisms underlying directional pollen tube growth in the pistil are poorly understood. We have purified a glycoprotein, TTS, from tobacco stylar transmitting tissue, which supports pollen tube growth between the stigma and the ovary. TTS proteins belong to the arabinogalactan protein family, and they polymerize readily in vitro in a head-to-tail fashion into oligomeric forms. TTS proteins stimulate pollen tube growth in vitro and attract pollen tubes grown in a semi-in vivo culture system. In vivo, the pollen tube growth rate is reduced in transgenic plants that have significantly reduced levels of TTS proteins as a result of either antisense suppression or sense cosuppression. These results identify TTS protein as a pistil component that positively contributes to pollen tube growth.


Plant Physiology | 2005

Pectin Methylesterase, a Regulator of Pollen Tube Growth

Maurice Bosch; Alice Y. Cheung; Peter K. Hepler

The apical wall of growing pollen tubes must be strong enough to withstand the internal turgor pressure, but plastic enough to allow the incorporation of new membrane and cell wall material to support polarized tip growth. These essential rheological properties appear to be controlled by pectins, which constitute the principal component of the apical cell wall. Pectins are secreted as methylesters and subsequently deesterified by the enzyme pectin methylesterase (PME) in a process that exposes acidic residues. These carboxyls can be cross-linked by calcium, which structurally rigidifies the cell wall. Here, we examine the role of PME in cell elongation and the regulation of its secretion and enzymatic activity. Application of an exogenous PME induces thickening of the apical cell wall and inhibits pollen tube growth. Screening a Nicotiana tabacum pollen cDNA library yielded a pollen-specific PME, NtPPME1, containing a pre-region and a pro-region. Expression studies with green fluorescent protein fusion proteins show that the pro-region participates in the correct targeting of the mature PME. Results from in vitro growth analysis and immunolocalization studies using antipectin antibodies (JIM5 and JIM7) provide support for the idea that the pro-region acts as an intracellular inhibitor of PME activity, thereby preventing premature deesterification of pectins. In addition to providing experimental data that help resolve the significance and function of the pro-region, our results give insight into the mechanism by which PME and its pro-region regulate the cell wall dynamics of growing pollen tubes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development

Qiaohong Duan; Daniel Kita; Chao Li; Alice Y. Cheung; Hen-ming Wu

Plant RHO GTPases (RAC/ROPs) mediate multiple extracellular signals ranging from hormone to stress and regulate diverse cellular processes important for polarized cell growth, differentiation, development, reproduction, and responses to the environment. They shuttle between the GDP-bound inactive state and the GTP-bound activated state and their activation is predominantly mediated by a family of guanine nucleotide exchange factors (GEFs) referred to as ROPGEFs. Using the Arabidopsis ROPGEF1 as bait, we identified members of a receptor-like kinase (RLK) family as potential upstream regulators for RAC/ROP signaling. NADPH oxidase-derived reactive oxygen species (ROS) are emerging as important regulators for growth and development and play a crucial role in mediating RAC/ROP-regulated root hair development, a polarized cell growth process. We therefore screened T-DNA insertion mutants in these RLKs for root hair defects and found that mutations in one of them, At3g51550 encoding the FERONIA (FER) receptor-like kinase, induced severe root hair defects. We show that the fer phenotypes correlated with reduced levels of active RAC/ROPs and NADPH oxidase-dependent, auxin-regulated ROS accumulation in roots and root hairs and that up-regulating RAC/ROP signaling in fer countered the mutant phenotypes. Taken together, these observations strongly support FER as an upstream regulator for the RAC/ROP-signaled pathway that controls ROS-mediated root hair development. Moreover, FER was pulled down by ROP2 GTPase in a guanine nucleotide-regulated manner implying a dynamic signaling complex involving FER, a ROPGEF, and a RAC/ROP.


Cell | 1995

A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower

Hen-ming Wu; Hong Wang; Alice Y. Cheung

In plant sexual reproduction, pollen tubes elongate from the stigma, through the stylar transmitting tissue, to the ovary of the pistil to deliver the male gametes for fertilization. TTS protein is a tobacco transmitting tissue glycoprotein shown to attract pollen tubes and promote their growth. Here, we show TTS proteins adhere to the pollen tube surface and tips, suggesting that they may serve as adhesive substrates for pollen tube growth. TTS proteins are also incorporated into pollen tube walls and are deglycosylated by pollen tubes, suggesting that they may provide nutrients to this process. Within the transmitting tissue, TTS proteins display a gradient of increasing glycosylation from the stigmatic end to the ovarian end of the style, coincident with the direction of pollen tube growth. These results together suggest that the TTS protein-bound sugar gradient may contribute to guiding pollen tubes from the stigma to the ovary.


The Plant Cell | 2002

The Regulation of Actin Organization by Actin-Depolymerizing Factor in Elongating Pollen Tubes

Christine Y.-h. Chen; Eric I. Wong; Luis Vidali; Athena Estavillo; Peter K. Hepler; Hen-ming Wu; Alice Y. Cheung

Pollen tube elongation is a polarized cell growth process that transports the male gametes from the stigma to the ovary for fertilization inside the ovules. Actomyosin-driven intracellular trafficking and active actin remodeling in the apical and subapical regions of pollen tubes are both important aspects of this rapid tip growth process. Actin-depolymerizing factor (ADF) and cofilin are actin binding proteins that enhance the depolymerization of microfilaments at their minus, or slow-growing, ends. A pollen-specific ADF from tobacco, NtADF1, was used to dissect the role of ADF in pollen tube growth. Overexpression of NtADF1 resulted in the reduction of fine, axially oriented actin cables in transformed pollen tubes and in the inhibition of pollen tube growth in a dose-dependent manner. Thus, the proper regulation of actin turnover by NtADF1 is critical for pollen tube growth. When expressed at a moderate level in pollen tubes elongating in in vitro cultures, green fluorescent protein (GFP)–tagged NtADF1 (GFP-NtADF1) associated predominantly with a subapical actin mesh composed of short actin filaments and with long actin cables in the shank. Similar labeling patterns were observed for GFP-NtADF1–expressing pollen tubes elongating within the pistil. A Ser-6-to-Asp conversion abolished the interaction between NtADF1 and F-actin in elongating pollen tubes and reduced its inhibitory effect on pollen tube growth significantly, suggesting that phosphorylation at Ser-6 may be a prominent regulatory mechanism for this pollen ADF. As with some ADF/cofilin, the in vitro actin-depolymerizing activity of recombinant NtADF1 was enhanced by slightly alkaline conditions. Because a pH gradient is known to exist in the apical region of elongating pollen tubes, it seems plausible that the in vivo actin-depolymerizing activity of NtADF1, and thus its contribution to actin dynamics, may be regulated spatially by differential H+ concentrations in the apical region of elongating pollen tubes.


The Plant Cell | 2004

Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane.

Alice Y. Cheung; Hen-ming Wu

Formins, actin-nucleating proteins that stimulate the de novo polymerization of actin filaments, are important for diverse cellular and developmental processes, especially those dependent on polarity establishment. A subset of plant formins, referred to as group I, is distinct from formins from other species in having evolved a unique N-terminal structure with a signal peptide, a Pro-rich, potentially glycosylated extracellular domain, and a transmembrane domain. We show here that overexpression of the Arabidopsis formin AFH1 in pollen tubes induces the formation of arrays of actin cables that project into the cytoplasm from the cell membrane and that its N-terminal structure targets AFH1 to the cell membrane. Pollen tube elongation is a polar cell growth process dependent on an active and tightly regulated actin cytoskeleton. Slight increases in AFH1 stimulate growth, but its overexpression induces tube broadening, growth depolarization, and growth arrest in transformed pollen tubes. These results suggest that AFH1-regulated actin polymerization is important for the polar pollen cell growth process. Moreover, severe membrane deformation was observed in the apical region of tip-expanded, AFH1-overexpressing pollen tubes in which an abundance of AFH1-induced membrane-associated actin cables was evident. These observations suggest that regulated AFH1 activity at the cell surface is important for maintaining tip-focused cell membrane expansion for the polar extension of pollen tubes. The cell surface–located group-I formins may play the integrin-analogous role as mediators of external stimuli to the actin cytoskeleton, and AFH1 could be important for mediating extracellular signals from female tissues to elicit the proper pollen tube growth response during pollination.


The Plant Cell | 2002

Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth

Alice Y. Cheung; Christine Y.-h. Chen; Richard H. Glaven; Barend H.J. de Graaf; Luis Vidali; Peter K. Hepler; Hen-ming Wu

Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging. We report here that a tobacco pollen-predominant Rab2, NtRab2, functions in the secretory pathway between the endoplasmic reticulum and the Golgi in elongating pollen tubes. Green fluorescent protein–NtRab2 fusion protein localized to the Golgi bodies in elongating pollen tubes. Dominant-negative mutations in NtRab2 proteins inhibited their Golgi localization, blocked the delivery of Golgi-resident as well as plasmalemma and secreted proteins to their normal locations, and inhibited pollen tube growth. On the other hand, when green fluorescent protein–NtRab2 was over-expressed in transiently transformed leaf protoplasts and epidermal cells, in which NtRab2 mRNA have not been observed to accumulate to detectable levels, these proteins did not target efficiently to Golgi bodies. Together, these observations indicate that NtRab2 is important for trafficking between the endoplasmic reticulum and the Golgi bodies in pollen tubes and may be specialized to optimally support the high secretory demands in these tip growth cells.


The Plant Cell | 2005

Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco.

Barend H.J. de Graaf; Alice Y. Cheung; Tatyana Andreyeva; Kathryn Levasseur; Marcia J. Kieliszewski; Hen-ming Wu

Pollen tube growth is a polarized growth process whereby the tip-growing tubes elongate within the female reproductive tissues to deliver sperm cells to the ovules for fertilization. Efficient and regulated membrane trafficking activity incorporates membrane and deposits cell wall molecules at the tube apex and is believed to underlie rapid and focused growth at the pollen tube tip. Rab GTPases, key regulators of membrane trafficking, are candidates for important roles in regulating pollen tube growth. We show that a green fluorescent protein–tagged Nicotiana tabacum pollen-expressed Rab11b is localized predominantly to an inverted cone-shaped region in the pollen tube tip that is almost exclusively occupied by transport vesicles. Altering Rab11 activity by expressing either a constitutive active or a dominant negative variant of Rab11b in pollen resulted in reduced tube growth rate, meandering pollen tubes, and reduced male fertility. These mutant GTPases also inhibited targeting of exocytic and recycled vesicles to the pollen tube inverted cone region and compromised the delivery of secretory and cell wall proteins to the extracellular matrix. Properly regulated Rab11 GTPase activity is therefore essential for tip-focused membrane trafficking and growth at the pollen tube apex and is pivotal to reproductive success.


The Plant Cell | 2003

Actin-Depolymerizing Factor Mediates Rac/Rop GTPase–Regulated Pollen Tube Growth

Christine Y.-h. Chen; Alice Y. Cheung; Hen-ming Wu

Pollen tube elongation is a rapid tip growth process that is driven by a dynamic actin cytoskeleton. A ubiquitous family of actin binding proteins, actin-depolymerizing factors (ADFs)/cofilins, bind to actin filaments, induce severing, enhance depolymerization from their slow-growing end, and are important for maintaining actin dynamics in vivo. ADFs/cofilins are regulated by multiple mechanisms, among which Rho small GTPase–activated phosphorylation at a terminal region Ser residue plays an important role in regulating their actin binding and depolymerizing activity, affecting actin reorganization. We have shown previously that a tobacco pollen-specific ADF, NtADF1, is important for maintaining normal pollen tube actin cytoskeleton organization and growth. Here, we show that tobacco pollen grains accumulate phosphorylated and nonphosphorylated forms of ADFs, suggesting that phosphorylation could be a regulatory mechanism for their activity. In plants, Rho-related Rac/Rop GTPases have been shown to be important regulators for pollen tube growth. Overexpression of Rac/Rop GTPases converts polar growth into isotropic growth, resulting in pollen tubes with ballooned tips and a disrupted actin cytoskeleton. Using the Rac/Rop GTPase–induced defective pollen tube phenotype as a functional assay, we show that overexpression of NtADF1 suppresses the ability of NtRac1, a tobacco Rac/Rop GTPase, to convert pollen tube tip growth to isotropic growth. This finding suggests that NtADF1 acts in a common pathway with NtRac1 to regulate pollen tube growth. A mutant form of NtADF1 with a nonphosphorylatable Ala substitution at its Ser-6 position [NtADF1(S6A)] shows increased activity, whereas the mutant NtADF1(S6D), which has a phospho-mimicking Asp substitution at the same position, shows reduced ability to counteract the effect of NtRac1. These observations suggest that phosphorylation at Ser-6 of NtADF1 could be important for its integration into the NtRac1 signaling pathway. Moreover, overexpression of NtRac1 diminishes the actin binding activity of green fluorescent protein (GFP)–NtADF1 but has little effect on the association of GFP-NtADF1(S6A) with actin cables in pollen tubes. Together, these observations suggest that NtRac1-activated activity regulates the actin binding and depolymerizing activity of NtADF1, probably via phosphorylation at Ser-6. This notion is further supported by the observation that overexpressing a constitutively active NtRac1 in transformed pollen grains significantly increases the ratio of phosphorylated to nonphosphorylated ADFs. Together, the observations reported here strongly support the idea that NtRac1 modulates NtADF1 activity through phosphorylation at Ser-6 to regulate actin dynamics.


Plant Physiology | 2008

The Regulatory RAB and ARF GTPases for Vesicular Trafficking

Erik Nielsen; Alice Y. Cheung; Takashi Ueda

While highly conserved in structure and in fundamental regulatory aspects for their activities, the RAS superfamily of monomeric GTP-binding proteins, or small GTPases, comprise a large family of regulatory molecules that collectively regulate diverse and critical cellular processes in eukaryotes.

Collaboration


Dive into the Alice Y. Cheung's collaboration.

Top Co-Authors

Avatar

Hen-ming Wu

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Li-zhen Tao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Christine Y.-h. Chen

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Daniel Kita

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Qiaohong Duan

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Yanjiao Zou

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Candida Nibau

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter K. Hepler

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Chao Li

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge