Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia A. Petryk is active.

Publication


Featured researches published by Alicia A. Petryk.


Nano LIFE | 2010

MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT

Andrew J. Giustini; Alicia A. Petryk; Shiraz M. Cassim; Jennifer A. Tate; Ian Baker; P. Jack Hoopes

The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy.


International Journal of Hyperthermia | 2013

Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment

Alicia A. Petryk; Andrew J. Giustini; Rachel E. Gottesman; Peter A. Kaufman; P. Jack Hoopes

Abstract Purpose: The purpose of this study was to examine the therapeutic effect of magnetic nanoparticle hyperthermia (mNPH) combined with systemic cisplatin chemotherapy in a murine mammary adenocarcinoma model (MTGB). Materials and methods: An alternating magnetic field (35.8 kA/m at 165 kHz) was used to activate 110 nm hydroxyethyl starch-coated magnetic nanoparticles (mNP) to a thermal dose of 60 min at 43 °C. Intratumoral mNP were delivered at 7.5 mg of Fe/cm3 of tumour (four equal tumour quadrants). Intraperitoneal cisplatin at 5 mg/kg body weight was administered 1 h prior to mNPH. Tumour regrowth delay time was used to assess the treatment efficacy. Results: mNP hyperthermia, combined with cisplatin, was 1.7 times more effective than mNP hyperthermia alone and 1.4 times more effective than cisplatin alone (p < 0.05). Conclusions: Our results demonstrate that mNP hyperthermia can result in a safe and significant therapeutic enhancement for cisplatin cancer therapy.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Ionizing radiation increases systemic nanoparticle tumor accumulation

Andrew J. Giustini; Alicia A. Petryk; P. Jack Hoopes

Nanoparticle-based therapies are currently being explored for both the imaging and treatment of primary and metastatic cancers. Effective nanoparticle cancer therapy requires significant accumulations of nanoparticles within the tumor environment. Various techniques have been used to improve tumor nanoparticle uptake and biodistribution. Most notable of these techniques is the use of tumor-specific peptide-conjugated nanoparticles and chemical modification of the nanoparticles with immune-evading polymers. Another strategy for improving the tumor uptake of the nanoparticles is modification of the tumor microenvironment with a goal of intensifying the enhanced permeability and retention effect inherent to solid tumors. We demonstrate a twofold increase in the tumor accumulation of systemically delivered iron oxide nanoparticles following a single 15-Gy radiation dose in a syngeneic mouse breast tumor model. This increase in nanoparticle tumor accumulation correlates with a radiation-induced decrease in tumor interstitial pressure and a subsequent increase in vascular permeability.


International Journal of Hyperthermia | 2013

Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model

Alicia A. Petryk; Andrew J. Giustini; Rachel E. Gottesman; B. Stuart Trembly; P. Jack Hoopes

Abstract Purpose: The purpose of this study was to compare the efficacy of iron oxide/magnetic nanoparticle hyperthermia (mNPH) and 915 MHz microwave hyperthermia at the same thermal dose in a mouse mammary adenocarcinoma model. Materials and methods: A thermal dose equivalent to 60 min at 43 °C (CEM60) was delivered to a syngeneic mouse mammary adenocarcinoma flank tumour (MTGB) via mNPH or locally delivered 915 MHz microwaves. mNPH was generated with ferromagnetic, hydroxyethyl starch-coated magnetic nanoparticles. Following mNP delivery, the mouse/tumour was exposed to an alternating magnetic field (AMF). The microwave hyperthermia treatment was delivered by a 915 MHz microwave surface applicator. Time required for the tumour to reach three times the treatment volume was used as the primary study endpoint. Acute pathological effects of the treatments were determined using conventional histopathological techniques. Results: Locally delivered mNPH resulted in a modest improvement in treatment efficacy as compared to microwave hyperthermia (p = 0.09) when prescribed to the same thermal dose. Tumours treated with mNPH also demonstrated reduced peritumoral normal tissue damage. Conclusions: Our results demonstrate similar tumour treatment efficacy when tumour heating is delivered by locally delivered mNPs and 915 MHz microwaves at the same measured thermal dose. However, mNPH treatments did not result in the same type or level of peritumoral damage seen with the microwave hyperthermia treatments. These data suggest that mNP hyperthermia is capable of improving the therapeutic ratio for locally delivered tumour hyperthermia. These results further indicate that this improvement is due to improved heat localisation in the tumour.


Proceedings of SPIE--the International Society for Optical Engineering | 2009

Iron oxide nanoparticle hyperthermia and radiation cancer treatment

Shiraz M. Cassim; Andrew J. Giustini; Alicia A. Petryk; R. A. Strawbridge; P. J. Hoopes

It is established that heat can enhance the effect of radiation cancer treatment. Due to the ability to localize thermal energy using nanoparticle hyperthermia, as opposed to other, less targeted, hyperthermia modalities, it appears such enhancement could be accomplished without complications normally associated with systemic or regional hyperthermia. This study employs non-curative (suboptimal), doses of heat and radiation, in an effort to determine the therapeutic enhancement potential for IONP hyperthermia and radiation. Methods: MTG-B murine breast adenocarcinoma cell are inoculated into the right flanks of female CH3/HEJ mice and grown to volumes of 150mm3+ /- 40 mm3. A single dose of 15 Gy (6 MeV) radiation was uniformly delivered to the tumor. A pre-defined thermal dose is delivered by direct injection of iron oxide nanoparticles into the tumor. By adjusting the field strength of the 160 KHz alternating magnetic field (AMF) an intra-tumoral temperature between 41.5 and 43 degrees Celsius was maintained for 10min. The alternating magnetic field was delivered by a water-cooled 36mm diameter square copper tube induction coil operating at 160 kHz with variable magnet field strengths up to 450 Oe . The primary endpoint of the study is the number of days required for the tumor to achieve a volume 3 fold greater than the volume at the time of treatment (tumor regrowth delay). Results: Preliminary results suggest the addition of a modest IONP hyperthermia to 15 Gy radiation achieved an approximate 50% increase in tumor regrowth delay as compared to a 15 Gy radiation treatment alone. The therapeutic effects of IONP heat and radiation combined were considered additive, however in mice that demonstrated complete response (no tumor present after 30 days), the effect was considered superadditive or synergistic. Although this data is very encouraging from a multimodality cancer therapy standpoint, additional temporal and dose related information is clearly necessary to optimize the therapy.


Proceedings of SPIE | 2013

Magnetic nanoparticle hyperthermia: predictive model for temperature distribution

Robert V. Stigliano; Fridon Shubitidze; Alicia A. Petryk; Jennifer A. Tate; P. Jack Hoopes

Magnetic nanoparticle (mNP) hyperthermia is a promising adjuvant cancer therapy. mNP’s are delivered intravenously or directly into a tumor, and excited by applying an alternating magnetic field (AMF). The mNP’s are, in many cases, sequestered by cells and packed into endosomes. The proximity of the mNP’s has a strong influence on their ability to heat due to inter-particle magnetic interaction effects. This is an important point to take into account when modeling the mNP’s. Generally, more mNP heating can be achieved using higher magnetic field strengths. The factor which limits the maximum field strength applied to clinically relevant volumes of tissue is the heating caused by eddy currents, which are induced in the noncancerous tissue. A coupled electromagnetic and thermal model has been developed to predict dynamic thermal distributions during AMF treatment. The EM model is based on the method of auxiliary sources and the thermal modeling is based on the Pennes bioheat equation. The results of our phantom study are used to validate the model which takes into account nanoparticle heating, interaction effects, particle spatial distribution, particle size distribution, EM field distribution, and eddy current generation in a controlled environment. Preliminary in vivo data for model validation are also presented. Once fully developed and validated, the model will have applications in experimental design, AMF coil design, and treatment planning.


Proceedings of SPIE | 2012

In Vivo Imaging and Quantification of Iron Oxide Nanoparticle Uptake and Biodistribution

P. Jack Hoopes; Alicia A. Petryk; Barjor Gimi; Andrew J. Giustini; John B. Weaver; John C. Bischof; Ryan Chamberlain; Michael Garwood

Recent advances in nanotechnology have allowed for the effective use of iron oxide nanoparticles (IONPs) for cancer imaging and therapy. When activated by an alternating magnetic field (AMF), intra-tumoral IONPs have been effective at controlling tumor growth in rodent models. To accurately plan and assess IONP-based therapies in clinical patients, noninvasive and quantitative imaging technique for the assessment of IONP uptake and biodistribution will be necessary. Proven techniques such as confocal, light and electron microscopy, histochemical iron staining, ICP-MS, fluorescent labeled mNPs and magnetic spectroscopy of Brownian motion (MSB), are being used to assess and quantify IONPs in vitro and in ex vivo tissues. However, a proven noninvasive in vivo IONP imaging technique has not yet been developed. In this study we have demonstrated the shortcomings of computed tomography (CT) and magnetic resonance imaging (MRI) for effectively observing and quantifying iron /IONP concentrations in the clinical setting. Despite the poor outcomes of CT and standard MR sequences in the therapeutic concentration range, ultra-short T2 MRI methods such as, Sweep Imaging With Fourier Transformation (SWIFT), provide a positive iron contrast enhancement and a reduced signal to noise ratio. Ongoing software development and phantom and in vivo studies, will further optimize this technique, providing accurate, clinically-relevant IONP biodistribution information.


Proceedings of SPIE | 2013

Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy.

P. Jack Hoopes; Alicia A. Petryk; Jennifer A. Tate; Mark S. Savellano; Rendall R. Strawbridge; Andrew J. Giustini; Radu V. Stan; Barjor Gimi; Michael Garwood

The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a positive iron contrast enhancement and a reduced signal to noise ratio, for effective observation and quantification of Fe/mNP concentrations in the clinical setting.


Proceedings of SPIE--the International Society for Optical Engineering | 2009

Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells.

P. J. Hoopes; Jennifer A. Tate; J. A. Ogden; Rendall R. Strawbridge; S. N. Fiering; Alicia A. Petryk; Shiraz M. Cassim; Andrew J. Giustini; E. Demidenko; R. Ivkov; S. Barry; P. Chinn; A. Foreman

Hyperthermia, as an independent modality or in combination with standard cancer treatments such as chemotherapy and radiation, has been established in vitro and in vivo as an effective cancer treatment. However, despite efforts over the past 25 years, such therapies have never been optimized or widelyaccepted clinically. Although methods continue to improve, conventionally-delivered heat (RF, ultrasound, microwave etc) can not be delivered in a tumor selective manner. The development of antibody-targeted, or even nontargeted, biocompatible iron oxide nanoparticles (IONP) now allows delivery of cytotoxic heat to individual cancer cells. Using a murine mouse mammary adenocarcinoma (MTGB) and human colon carcinoma (HT29) cells, we studied the biology and treatment of IONP hyperthermia tumor treatment. Methods: Cancer cells (1 x 106) with or without iron oxide nanoparticles (IONP) were studied in culture or in vivo via implanted subcutaneously in female C3H mice, Tumors were grown to a treatment size of 150 mm3 and tumors volumes were measured using standard 3-D caliper measurement techniques. Mouse tumors were heated via delivery of an alternating magnetic field, which activated the nanoparticles, using a cooled 36 mm diameter square copper tube induction coil which provided optimal heating in 1.5 cm wide region of the coil. The IONPs were dextran coated and had a hydrodynamic radius of approximately 100 nm. For the in vivo studies, intra-tumor, peritumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Although some eddy current heating was generated in non-target tissues at the higher field strengths, our preliminary IONP hyperthermia studies show that whole mouse AMF exposure @160 KHz and 400 or 550 Oe, for a 20 minutes (heat-up and protocol heating), provides a safe and efficacious tumor treatment. Initial electron and light microscopic studies (in vitro and in vivo) showed the 100 nm used in our studies are rapidly taken up and retained by the tumor cells. Additional in vitro studies suggest antibodies can significantly enhance the cellular uptake of IONPs.


Proceedings of SPIE | 2011

Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity.

Andrew J. Giustini; Rachel E. Gottesman; Alicia A. Petryk; Adam M. Rauwerdink; P. Jack Hoopes

Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

Collaboration


Dive into the Alicia A. Petryk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge