Alicia Fabrizio de Iorio
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alicia Fabrizio de Iorio.
Waste Management | 2008
Anahí Magdaleno; Alicia Mendelson; Alicia Fabrizio de Iorio; A. Rendina; Juan Moretton
The Matanza-Riachuelo is one of the most polluted rivers of Latin America. The complex chemical mixture of pollutants discharged into the river is accumulated in the river sediments. In this paper, Matanza-Riachuelo river sediment composition and genotoxicity were tested in order to develop a cost-effective, environmentally sound option for disposal and management of contaminated dredged materials. Sampling was performed in a rural area, in a solid waste dumpsite and also in an urban and industrial area. The concentrations of total heavy metals increased from the upper basin to the lower basin. The Ames Salmonella typhimurium test and the Saccharomyces cerevisiae D7 test were performed using toxicity characteristic leachate procedure (TCLP) leachates. The concentrations of copper, lead, and chromium in the leachates exceeded the guide levels for the protection of aquatic life. Low concentrations of organic chlorinated compounds were detected in the leachates. Genotoxic profiles were obtained by testing TCLP leachates from polluted sediment samples with Salmonella typhimurium, Saccharomyces cerevisiae D7, and water sediment suspension with Allium cepa test. No mutagenicity effects on Ames test were observed. Gene conversion and mitotic reversion in Saccharomyces cerevisiae D7 and chromosome aberration in Allium cepa were induced by the sediment samples. Results obtained suggest that dredged sediments could be classified as genotoxic hazardous waste.
Science of The Total Environment | 2015
Rodolfo Mendoza; Ileana García; Laura de Cabo; Cristian Weigandt; Alicia Fabrizio de Iorio
This study assessed the contamination by heavy metals (Cr, Cu, Pb, Zn), and nutrients (N, P) in soils and native plants, and the effect of the concentration of those elements with the density of arbuscular-mycorrhizal (AM) spores in soil and colonization in roots from the riverside of the Matanza-Riachuelo River Basin (MRRB). The concentration of metals and nutrients in soils and plants (Eleocharis montana, Cyperus eragrostis, Hydrocotyle bonariensis) increased from the upper sites (8 km from headwaters) to the lower sites (6 km from the mouth of the Riachuelo River) of the basin. AM-colonization on the roots of H. bonariensis and spore density in soil decreased as the concentrations of metals in soil and plant tissues increased from the upper to lower sites of the basin within a consistent gradient of contamination associated with land use, soil disturbance, population, and chemicals discharged into the streams and rivers along the MRRB. The general trends for all metals in plant tissue were to have highest concentrations in roots, then in rhizomes and lowest in aerial biomass. The translocation (TF) and bioconcentration (BCF) factors decreased in plants which grow from the upper sites to the lower sites of the basin. The plants tolerated a wide range in type and quantity of contamination along the basin by concentrating more metals and nutrients in roots than in aboveground tissue. The AM spore density in soil and colonization in roots of H. bonariensis decreased with the increase of the degree of contamination (Dc) in soil.
International Journal of Phytoremediation | 2006
Silvana Arreghini; Laura de Cabo; Alicia Fabrizio de Iorio
The effect of different sediments on growth, Zn uptake, Zn plant distribution, and morphometric variables of Schoenoplectus americanus were investigated under controlled conditions. Two types of sediments were assayed: from a large natural levee (LS) and alluvial sediments (AS), the former with lower organic matter (OM) and nutrients content than AS, without and with added Zn (2500 μg Zn/g air-dry sediment). Zinc partition in sediment was determined. Increases in water conductivity and Zn concentrations in water and sediments were observed in artificially contaminated treatments. Plants showed a lower aboveground growth rate, height, and width of shoots, and a higher Zn concentration in shoots and rhizomes. In the contaminated treatments, AS treatment showed lower Zn concentration in water and higher Zn concentration in sediments (total, exchangeable, and OM fractions) than LS treatment, due to Zn displacement from floodwater to sediments. The presence of a high level of OM and nutrients also increased aboveground biomass growth, whereas it decreased Zn concentration in shoots. Although the translocation factor increased with Zn addition, it was lower in AS treatment. Sediments of AS treatments are a suitable environment for growth of S. americanus, which partially compensates the toxic effects of Zn. Our results provide an encouraging basis for planning larger scale experiments to test the role of OM and nutrients in improving phytoremediation.
Soil and Sediment Contamination: An International Journal | 2012
A. Rendina; Alicia Fabrizio de Iorio
This study provides geochemical partitioning, potential bioavailability, and enrichment of Cd, Cu, Pb, and Zn in bottom sediments collected from the Matanza-Riachuelo River and its main tributary streams. A modified Tessier sequential extraction procedure, complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, was applied to determine the partitioning of metals into four fractions (metals bound to amorphous sulfide, carbonate, and exchangeable), bound to Fe/Mn oxides (reducible), bound to organic matter/sulfide (oxidizable) and residual. Spatial and vertical distributions of metals were studied. The core sediments show a decreasing concentration of metals with depth. In top sediments, non-residual Cu was mainly associated with oxidizable phase, whereas Pb, Cd, and Zn were mainly associated with amorphous sulfide. Pb exhibited the highest enrichment in all sites. The ratio AVS/SEM was greater than one at sediment sections close to the water column, indicating that metals extracted with hydrochloric acid were mainly associated with the amorphous sulfide. The strong influence of amorphous sulfide in the retention of Cd, Pb, and Zn in anoxic sediments of Matanza-Riachuelo river system suggests that dredging and aeration could lead to the remobilization of metals from sediments to the water column, hence making the metals more available to the biota.
Journal of Toxicology | 2012
María Victoria Casares; Laura de Cabo; Rafael S. Seoane; Oscar E. Natale; Milagros Castro Ríos; Cristian Weigandt; Alicia Fabrizio de Iorio
In order to determine copper toxicity (LC50) to a local species (Cnesterodon decemmaculatus) in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L−1. The 96 h Cu LC50 calculated was 0.655 mg L−1 (0.823 − 0.488). 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L−1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test.
Journal of Environmental Quality | 2012
Ana Rosa García; Roberto Maisonnave; Marcelo J. Massobrio; Alicia Fabrizio de Iorio
Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow.
Chemical Speciation and Bioavailability | 2011
A. Rendina; María Josefina Barros; Alicia Fabrizio de Iorio
Abstract This study investigated the effect of two organic amendments (compost of cattle ruminai content and Sphagnum-moss peat) on the reduction of hexavalent chromium and the distribution of this metal among the main solid phases of a soil with low organic matter content treated with different levels of Cr(VI) (0–2000 mg Cr kg−1 soil). At the same level of added organic carbon, the peat reduced Cr(VI) added to the soil from 250 to 2000 mg kg−1, with 100% efficiency. The reduction efficiency of the compost, however, decreased with the increasing dose of Cr(VI) soil. The distribution of Cr between the different soil components was evaluated by a sequential chemical extraction procedure. The concentration of water-soluble and exchangeable Cr decreased with the addition of organic amendments to the soil, whereas Cr increased in the organic fraction. The effect of added organic material on the Cr absorption was examined with two ornamental plants (Melissa officinalis and Begonia semperflorens). The increased Cr(VI) in the soil increased the Cr concentration in plant tissues. The addition of organic matter produced a greater aerial biomass for each level of added Cr in comparison with unamended soil. Sphagnum moss peat was more effective than the compost to decrease the total Cr and the Cr(VI) concentration in the water-soluble and exchangeable fraction of soil, thereby reducing the Cr accumulation in plants tissues and phytotoxic symptoms.
Wetlands | 1995
Gerardo Rubio; Raúl S. Lavado; A. Rendina; Marta Bargiela; Claudia A. Porcelli; Alicia Fabrizio de Iorio
Organic P plays a key role as a source and sink of P in hydromorphic soils. Our objective was to study the influence of hydromorphism on the distribution of soil organic P fractions. The research was performed at 4 sites from a toposequence of the Flooding Pampa (Argentina), which varied from a never-flooded upland site to a lowland site that remains waterlogged most of the year. All the soils were of the same age, parent material, vegetation type (native grassland), and land use. Total P content was higher in the soil of the lowland site than in that of the upland site. In all sites, at the 0–10 cm depth, most soil P was found in the organic fraction (ranging from 68 to 80%). The sum of the moderately resistant and resistant to mineralization fractions was greater than the labile and moderately labile fractions. The differences in the relative distribution of organic P fractions were minimal among sites. As a consequence, in these soils developed from the same parent material and with the same vegetation type (native grassland) and land use, the duration of waterlogging had little influence on the fractionation of soil organic P.
Ecotoxicology and Environmental Safety | 2017
Lucía N. Biruk; Juan Moretton; Alicia Fabrizio de Iorio; Cristian Weigandt; Jimena Etcheverry; Javier Filippetto; Anahí Magdaleno
The aim of this study was to investigate the parameters of chemical extraction associated with the detection of toxicity and genotoxicity in sediment sample extracts. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs), together with a battery of four bioassays, was performed in order to evaluate the extraction efficiency of inorganic and organic toxicants. The extracts were carried out using two inorganic solvents, two organic solvents and two extraction methodologies, making a total of five extracts. Two toxicity tests, the algal growth inhibition of Pseudokirchneriella subcapitata and the root elongation inhibition of Lactuca sativa, and two genotoxicity tests, the analysis of revertants of Salmonella typhimurium and the analysis of micronuclei and chromosomal aberrations in Allium cepa, were performed. According to the chemical analysis, the acidic solution extracted more heavy metal concentrations than distilled water, and dichloromethane extracted more but fewer concentrations of PAH compounds than methanol. Shaker extracts with distilled water were non-toxic to P. subcapitata, but were toxic to L. sativa. The acidic extracts were more toxic to P. subcapitata than to L. sativa. The methanolic organic extracts were more toxic to the alga than those obtained with dichloromethane. None of these extracts resulted toxic to L. sativa. Mutagenic effects were only detected in the organic dichloromethane extracts in the presence of metabolic activation. All the inorganic and organic extracts were genotoxic to A. cepa. This study showed that the implementation of different extraction methods together with a battery of bioassays could be suitable tools for detecting toxicity and genotoxicity in sediment samples.
Archive | 2015
Laura de Cabo; Roberto José María Serafini; Silvana Arreghini; Alicia Fabrizio de Iorio
There are a few studies about full scale and on-site treatments using macrophytes. In this contribution we compare the phytoremediation role of floating, submersed, and emergent macrophytes grown in natural and artificial wetlands. Metal uptake capacity of aquatic plants is low and this exclusion strategy seems to be more widespread among aquatic plants. Bioconcentration factors and translocation are lower than those calculated in bioassays conducted under laboratory conditions. There are not hyperaccumulators among the studied plants. However, regarding the capacity of accumulation of metals in the standing crop, the floating plants are most effective for phytoextraction, followed by submersed species and then emergent species. The emergent plants are more effective for phytostabilization. The metals released during the decomposition could be further retained by the new binding sites generated in bottom sediment. Use of native species in remediation projects, not always considered in scientific or technical papers is essential to preserve biological diversity and, requires more detailed studies for each natural ecosystem.