Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia G. Arroyo is active.

Publication


Featured researches published by Alicia G. Arroyo.


The EMBO Journal | 2007

MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway

Jose Javier Bravo-Cordero; Raquel Marrero-Diaz; Diego Megías; Laura Genís; Aranzazu García-Grande; María A García; Alicia G. Arroyo; María C. Montoya

MT1‐matrix metalloproteinase (MT1‐MMP) is one of the most critical factors in the invasion machinery of tumor cells. Subcellular localization to invasive structures is key for MT1‐MMP proinvasive activity. However, the mechanism driving this polarized distribution remains obscure. We now report that polarized exocytosis of MT1‐MMP occurs during MDA‐MB‐231 adenocarcinoma cell migration into collagen type I three‐dimensional matrices. Polarized trafficking of MT1‐MMP is triggered by β1 integrin‐mediated adhesion to collagen, and is required for protease localization at invasive structures. Localization of MT1‐MMP within VSV‐G/Rab8‐positive vesicles, but not in Rab11/Tf/TfRc‐positive compartment in invasive cells, suggests the involvement of the exocytic traffic pathway. Furthermore, constitutively active Rab8 mutants induce MT1‐MMP exocytic traffic, collagen degradation and invasion, whereas Rab8‐ but not Rab11‐knockdown inhibited these processes. Altogether, these data reveal a novel pathway of MT1‐MMP redistribution to invasive structures, exocytic vesicle trafficking, which is crucial for its role in tumor cell invasiveness. Mechanistically, MT1‐MMP delivery to invasive structures, and therefore its proinvasive activity, is regulated by Rab8 GTPase.


Cardiovascular Research | 2010

Extracellular matrix, inflammation, and the angiogenic response

Alicia G. Arroyo; M. Luisa Iruela-Arispe

Inflammation and angiogenesis are frequently coupled in pathological situations such as atherosclerosis, diabetes, and arthritis. The inflammatory response increases capillary permeability and induces endothelial activation, which, when persistent, results in capillary sprouting. This inflammation-induced angiogenesis and the subsequent remodelling steps are in large part mediated by extracellular matrix (ECM) proteins and proteases. The focal increase in capillary permeability is an early consequence of inflammation, and results in the deposition of a provisional fibrin matrix. Subsequently, ECM turnover by proteases permits an invasive program by specialized endothelial cells whose phenotype can be regulated by inflammatory stimuli. ECM activity also provides specific mechanical forces, exposes cryptic adhesion sites, and releases biologically active fragments (matrikines) and matrix-sequestered growth factors, all of which are critical for vascular morphogenesis. Further matrix remodelling and vascular regression contribute to the resolution of the inflammatory response and facilitate tissue repair.


Hepatology | 2004

Angiogenesis in chronic inflammatory liver disease

Jesús Medina; Alicia G. Arroyo; Francisco Sánchez-Madrid; Ricardo Moreno-Otero

Intrahepatic hypoxia may occur during the inflammatory and fibrotic processes that characterize several chronic liver diseases of viral and autoimmune origin. As a consequence, new vascular structures are formed to provide oxygen and nutrients. Angiogenesis involves a tightly regulated network of cellular and molecular mechanisms that result in the formation of functional vessels. Of particular importance are growth factors, molecules involved in matrix remodeling and cell migration, and vessel maturation—related factors. In recent years, a number of studies have examined the expression and function of many pro‐ and antiangiogenic molecules in the setting of nontumoral chronic liver diseases and liver regeneration. This review examines the potential pathogenetic role of angiogenesis in the context of viral hepatitis, cirrhosis, autoimmune hepatitis, primary biliary cirrhosis, and alcoholic liver disease. The future perspectives for research in this field are outlined. (HEPATOLOGY 2004;39:1185–1195.)


Journal of Cell Biology | 2002

ECM regulates MT1-MMP localization with β1 or αvβ3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells

Beatriz G. Gálvez; Salomón Matías-Román; María Yáñez-Mó; Francisco Sánchez-Madrid; Alicia G. Arroyo

Regulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) by different extracellular matrices (ECMs) on human endothelial cells (ECs) has been investigated. First, MT1-MMP is found at the intercellular contacts of confluent ECs grown on β1 integrin–dependent matrix such as type 1 collagen (COL I), fibronectin (FN), or fibrinogen (FG), but not on gelatin (GEL) or vitronectin (VN). The novel localization of MT1-MMP at cell–cell contacts is assessed by confocal videomicroscopy of MT1-MMP-GFP–transfected ECs. Moreover, MT1-MMP colocalizes with β1 integrins at the intercellular contacts, whereas it is preferentially found with αvβ3 integrin at motility-associated structures on migrating ECs. In addition, clustered integrins recruit MT1-MMP and neutralizing anti-β1 or anti-αv integrin mAb displace MT1-MMP from its specific sites, pointing to a biochemical association that is finally demonstrated by coimmunoprecipitation assays. On the other hand, COL I, FN, or FG up-regulate cell surface MT1-MMP on confluent ECs by an impairment of its internalization, whereas expression and internalization are not modified on GEL or VN. In addition, MT1-MMP activity is diminished in confluent ECs on COL I, FN, or FG. Finally, MT1-MMP participates and cooperates with β1 and αvβ3 integrins in the migration of ECs on different ECM. These data show a novel mechanism by which ECM regulates MT1-MMP association with β1 or αvβ3 integrins at distinct cellular compartments, thus modulating its internalization, activity, and function on human ECs.


Journal of Clinical Investigation | 2002

The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression

Enrique Lara-Pezzi; María Victoria Gómez-Gaviro; Beatriz G. Gálvez; Emilia Mira; Miguel A. Iñiguez; Manuel Fresno; Carlos Martínez-A; Alicia G. Arroyo; Manuel López-Cabrera

Hepatocellular carcinoma is strongly associated with chronic infection by the hepatitis B virus (HBV) and has poor prognosis due to intrahepatic metastasis. HBx is often the only HBV protein detected in hepatic tumor cells; however, its contribution to tumor invasion and metastasis has not been established so far. In this work, we show that HBx enhances tumor cell invasion, both in vivo and in vitro. The increased invasive capacity induced by HBx is mediated by an upregulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, which in turn activates matrix metalloproteinase-2. Induction of both MT1-MMP expression and cell invasion by HBx is dependent on cyclooxygenase-2 (COX-2) activity. In addition, HBx upregulates the expression of COX-2, which is mediated by the transcriptional activation of the COX-2 gene promoter in a nuclear factor of activated T cell-dependent (NF-AT-dependent) manner. These results demonstrate the ability of HBx to promote tumor cell invasion by a mechanism involving the upregulation of MT1-MMP and COX-2 and provide new insights into the mechanism of action of this viral protein and its involvement in tumor metastasis and recurrence of hepatocellular carcinoma.


Cancer Research | 2004

Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities.

Rubén Álvaro Bartolomé; Beatriz G. Gálvez; Natividad Longo; Françoise Baleux; Goos N.P. van Muijen; Paloma Sánchez-Mateos; Alicia G. Arroyo; Joaquin Teixidó

Tissue invasion by tumor cells involves their migration across basement membranes through activation of extracellular matrix degradation and cell motility mechanisms. Chemokines binding to their receptors provide chemotactic cues guiding cells to specific tissues and organs; they therefore could potentially participate in tumor cell dissemination. Melanoma cells express CXCR4, the receptor for the chemokine stromal cell-derived factor-1α (SDF-1α). Using Matrigel as a model, we show that SDF-1α promotes invasion of melanoma cells across basement membranes. Stimulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) activity by SDF-1α was necessary for invasion, involving at least up-regulation in the expression of this metalloproteinase, as detected in the highly metastatic BLM melanoma cell line. Moreover, SDF-1α triggered the activation of the GTPases RhoA, Rac1, and Cdc42 on BLM cells, and expression of dominant-negative forms of RhoA and Rac1, but not Cdc42, substantially impaired the invasion of transfectants in response to SDF-1α, as well as the increase in MT1-MMP expression. Furthermore, CXCR4 expression on melanoma cells was notably augmented by transforming growth factor-β1, a Matrigel component, whereas anti-transforming growth factor-β antibodies inhibited increases in CXCR4 expression and melanoma cell invasion toward SDF-1α. The identification of SDF-1α as a potential stimulatory molecule for MT1-MMP as well as for RhoA and Rac1 activities during melanoma cell invasion, associated with an up-regulation in CXCR4 expression by interaction with basement membrane factors, could contribute to better knowledge of mechanisms stimulating melanoma cell dissemination.


Cancer and Metastasis Reviews | 2006

MT1-MMP: Universal or particular player in angiogenesis?

Laura Genís; Beatriz G. Gálvez; Pilar Gonzalo; Alicia G. Arroyo

Tumorigenesis involves not only tumor cells that become transformed but also the peritumoral stroma which reacts inducing inflammatory and angiogenic responses. Angiogenesis, the formation of new capillaries from preexisting vessels, is an absolute requirement for tumor growth and metastasis, and it can be induced and modulated by a wide variety of soluble factors. During angiogenesis, quiescent endothelial cells are activated and they initiate migration by degrading the basement membranes through the action of specific proteases, in particular of matrix metalloproteinases (MMPs). Among these, the membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified as a key player during the angiogenic response. In this review, we will summarize the role of MT1-MMP in angiogenesis and the regulatory mechanisms of this protease in endothelial cells. Since our recent findings have suggested that MT1-MMP is not universally required for angiogenesis, we hypothesize that the regulation and participation of MT1-MMP in angiogenesis may depend on the nature of the angiogenic stimulus. Experiments aimed at testing this hypothesis have shown that similarly to the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12, lipopolysaccharide (LPS) seems to induce the formation of capillary tubes by human or mouse endothelial cells (ECs) in an MT1-MMP-independent manner. The implications of these findings in the potential use of MT1-MMP inhibitors in cancer therapy are discussed.


Journal of Clinical Investigation | 1992

Increased binding of synovial T lymphocytes from rheumatoid arthritis to endothelial-leukocyte adhesion molecule-1 (ELAM-1) and vascular cell adhesion molecule-1 (VCAM-1).

A A Postigo; Rosario García-Vicuña; F Diaz-Gonzalez; Alicia G. Arroyo; M O de Landázuri; G Chi-Rosso; R R Lobb; Armando Laffón; F Sánchez-Madrid

The infiltration of the synovial membrane (SM) by mononuclear cells, mostly T cells, is a typical histopathological feature associated with rheumatoid arthritis (RA). The entry of T lymphocytes into the SM is believed to be mediated by a number of molecules in the endothelium that are induced in response to a series of inflammatory mediators. In this study, we have investigated the adhesion of synovial T cells from RA patients to two endothelial ligands: endothelial-leukocyte adhesion molecule-1 (ELAM-1), the only selectin known to function as a vascular addressin for T cells, and vascular cell adhesion molecule-1 (VCAM-1), the cellular ligand of VLA-4. Our results clearly demonstrate that synovial T cells isolated from both SM and synovial fluid (SF), bearing an activated and memory phenotype, displayed an enhanced capacity to interact with these two endothelial molecules as compared with T cells from peripheral blood (PB) either of the same RA patients or healthy donors. A further enhancement of VLA-4-mediated T cell binding to VCAM-1 and fibronectin could be observed when already in vivo-activated synovial T cells were stimulated in vitro with phorbol esters, suggesting the existence of several cellular affinity levels for both very late activation-4 (VLA-4) ligands. Moreover, both PB and synovial T cells from RA patients exhibited strong proliferative responses when they were cultured with either fibronectin or VCAM-1 in combination with submitogenic doses of anti-CD3 mAb. This increased endothelial binding ability of synovial T lymphocytes together with their proliferation in response to the interaction with VCAM-1 and fibronectin may represent important mechanisms in the regulation of T cell penetration and persistence in the chronically inflamed SM of RA.


Blood | 2008

MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells

María Yáñez-Mo; Olga Barreiro; Pilar Gonzalo; Alicia Batista; Diego Megías; Laura Genís; Norman Sachs; Mónica Sala-Valdés; Miguel A. Alonso; María C. Montoya; Arnoud Sonnenberg; Alicia G. Arroyo; Francisco Sánchez-Madrid

MT1-MMP plays a key role in endothelial function, as underscored by the angiogenic defects found in MT1-MMP deficient mice. We have studied the molecular interactions that underlie the functional regulation of MT1-MMP. At lateral endothelial cell junctions, MT1-MMP colocalizes with tetraspanin CD151 (Tspan 24) and its associated partner alpha3beta1 integrin. Biochemical and FRET analyses show that MT1-MMP, through its hemopexin domain, associates tightly with CD151, thus forming alpha3beta1 integrin/CD151/MT1-MMP ternary complexes. siRNA knockdown of HUVEC CD151 expression enhanced MT1-MMP-mediated activation of MMP2, and the same activation was seen in ex vivo lung endothelial cells isolated from CD151-deficient mice. However, analysis of collagen degradation in these experimental models revealed a diminished MT1-MMP enzymatic activity in confined areas around the cell periphery. CD151 knockdown affected both MT1-MMP subcellular localization and its inclusion into detergent-resistant membrane domains, and prevented biochemical association of the metalloproteinase with the integrin alpha3beta1. These data provide evidence for a novel regulatory role of tetraspanin microdomains on the collagenolytic activity of MT1-MMP and indicate that CD151 is a key regulator of MT1-MMP in endothelial homeostasis.


Journal of Biological Chemistry | 2005

Membrane Type 1-Matrix Metalloproteinase Is Regulated by Chemokines Monocyte-Chemoattractant Protein-1/CCL2 and Interleukin-8/CXCL8 in Endothelial Cells during Angiogenesis

Beatriz G. Gálvez; Laura Genís; Salomón Matías-Román; Samantha A. Oblander; Karl Tryggvason; Suneel S. Apte; Alicia G. Arroyo

We have investigated the putative role and regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in angiogenesis induced by inflammatory factors of the chemokine family. The absence of MT1-MMP from null mice or derived mouse lung endothelial cells or the blockade of its activity with inhibitory antibodies resulted in the specific decrease of in vivo and in vitro angiogenesis induced by CCL2 but not CXCL12. Similarly, CCL2- and CXCL8-induced tube formation by human endothelial cells (ECs) was highly dependent on MT1-MMP activity. CCL2 and CXCL8 significantly increased MT1-MMP surface expression, clustering, activity, and function in human ECs. Investigation of the signaling pathways involved in chemokine-induced MT1-MMP activity in ECs revealed that CCL2 and CXCL8 induced cortical actin polymerization and sustained activation of phosphatidylinositol 3-kinase (PI3K) and the small GTPase Rac. Inhibition of PI3K or actin polymerization impaired CCL2-induced MT1-MMP activity. Finally, dimerization of MT1-MMP was found to be enhanced by CCL2 in ECs in a PI3K- and actin polymerization-dependent manner. In summary, we identify MT1-MMP as a molecular target preferentially involved in angiogenesis mediated by CCL2 and CXCL8, but not CXCL12, and suggest that MT1-MMP dimerization might be an important mechanism of its regulation during angiogenesis.

Collaboration


Dive into the Alicia G. Arroyo's collaboration.

Top Co-Authors

Avatar

Pilar Gonzalo

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Beatriz G. Gálvez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Francisco Sánchez-Madrid

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Paloma Sánchez-Mateos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Salomón Matías-Román

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ángela Pollán

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Laura Genís

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Miguel R. Campanero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francisco Sánchez-Madrid

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Cristina Clemente

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Researchain Logo
Decentralizing Knowledge