Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia Inés Torres is active.

Publication


Featured researches published by Alicia Inés Torres.


Cellular and Molecular Neurobiology | 1997

Different behavior of lactotroph cell subpopulations in response to angiotensin II and thyrotrophin-releasing hormone.

Ana Lucía De Paul; Patricia Pons; Agustín Aoki; Alicia Inés Torres

Abstract1. In the present investigation we have extended the study of lactotroph subpopulations in primary pituitary cell cultures. Male rats with or without previous estrogenization followed by A-II or TRH treatments were selected as experimental models.2. The TRH increased up to 50% the PRL released in both whole and ORQX + EB rats (P < 0.05). In contrast, A-II treatment introduced no changes in PRL secretion from cell cultures derived from whole male rats but attained a significant augmentation (about 75%) of PRL secreted by ORQX + EB pituitary cells.3. The addition of TRH and A-II to cultures of ORQX + EB-derived lactotrophs induced cytological changes compatible with a high secretory activity. In estrogen-treated rats the prevailing lactotroph subpopulation is type I. In cell cultures from control and A-II treated whole male pituitaries, the majority of lactotrophs consists of atypical subpopulations of II and III cells, with smaller secretory granules (between 150 and 300 nm in diameter).4. Morphometry of immunostained lactotrophs performed on light microscopic preparations revealed that about 30–36% of the total cell count were lactotrophs. This percentage was fixed and did not change significantly after TRH and A-II treatments.5. The present results confirm the presence of morphological and functional subtypes of lactotroph cells in rat pituitary. Typical PRL cell population shows the highest responsiveness to angiotensin II and TRH action. This functional heterogeneity of lactotroph subtypes may reflect an important and scarcely explored factor in the regulatory process of prolactin secretion.


Histochemistry and Cell Biology | 1994

The mammosomatotroph: a transitional cell between growth hormone and prolactin producing cells? An immunocytochemical study

H. A. Passolli; Alicia Inés Torres; Agustín Aoki

In this report the occurrence of mammosomatotroph (MS) cells was correlated with changes in the somatotroph population of adult rat pituitary gland submitted to various experimental conditions (ovariectomized, orchidectomized and intact males, and after treatment with oestradiol benzoate). Cell and volume density of somatotrophs were assessed in sections stained with the immunogold-silver enhancement technique. Mammosomatotrophs were identified by double immunogold labelling at the electron microscopic level. Colocalization of prolactin (PRL) and growth hormone (GH) in the same cell was rarely observed. Only a few MS cells (0.1–0.2% of all parenchymal cells) were found in some experimental models. Oestrogen treatment decreased both cell and volume density of somatotrophs in ovariectomized rats. In this model, serum GH increased significantly but no changes in the pituitary content of the hormone were observed. Our results demonstrate that MS cells are an uncommon cell type in the pituitary of adult ovariectomized, orchidectomized and intact male rats. The oestrogen treatment, which is well known to induce proliferation of lactotrophs, has no effects on the MS population. Data presented in this report do not support the suggested role for mammosomatotrophs as transitional cells in the presumptive interconversion of PRL and GH producing cells.


Steroids | 2008

Estradiol interacts with insulin through membrane receptors to induce an antimitogenic effect on lactotroph cells.

Silvina Gutiérrez; Ana Lucía De Paul; Juan Pablo Petiti; Liliana del Valle Sosa; Claudia Mariela Palmeri; Marta Soaje; Elsa Margarita Orgnero; Alicia Inés Torres

The signaling mechanisms of estrogens interact with those of growth factors to control the pituitary gland functions. The contribution of the membrane bound estrogen receptor in these actions is not fully understood. In this study, we focused on the regulatory action of estradiol in interaction with insulin on the secretory and proliferative lactotroph cell activities from primary pituitary cell cultures. Furthermore, we studied the involvement of ERK1/2, PKC epsilon and Pit-1 in these actions. In serum free conditions, estradiol and estradiol-BSA promoted a differential secretory activity on PRL cells but were unable to induce lactotroph cell proliferation. However, both free and conjugated estradiol were competent arresting the mitogenic activity promoted by insulin. Estradiol, estradiol-BSA and insulin stimuli increased the PKC epsilon, phosphorylated ERK 1/2 and Pit-1 expression, although combined treatments with estradiol/insulin or estradiol-BSA/insulin induced a significant reduction in these levels, in close correlation with the decrease of lactotroph cell proliferation. The pre-treatment with PKC inhibitor BIM significantly inhibited the ERK activation promoted by insulin without modifying the ERK expression levels induced by estradiol or estradiol-BSA. By immuno-electron-microscopy the alpha nuclear estrogen receptor was localized in the plasma membrane of lactotroph cells. These findings suggest that the membrane bound ER participates modulating lactotroph cells proliferation via PKC epsilon, ERK1/2 and Pit-1. The interactions between estradiol and growth factors, inducing both mitogenic and antimitogenic effects, could provide glandular plasticity preventing an over-proliferation induced by growth factors.


Molecular and Cellular Endocrinology | 2008

Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester.

Juan Pablo Petiti; Ana Lucía De Paul; Silvina Gutiérrez; Claudia Mariela Palmeri; Jorge Humberto Mukdsi; Alicia Inés Torres

The aim of this investigation was to contribute to current knowledge about intracellular mechanisms that are involved in lactotroph cell proliferation, by evaluating the role of PKCalpha, PKCepsilon and extracellular-signal regulated kinase (ERK) 1/2 in response to phorbol 12-myristate13-acetate (PMA). In primary pituitary cultures, the activation of protein kinase C (PKC) by PMA for 15 min stimulated lactotroph proliferation; whereas a prolonged activation for 3-8h diminished this proliferative effect. The use of PMA for 15 min-activated PKCepsilon and ERK1/2, whereas incubation with PMA for 3 h induced PKCalpha activation and attenuated the PMA-triggered phosphorylation of ERK1/2. The following inhibitors: PKCs (bisindolylmaleimide I), PKCepsilon (epsilonV1 peptide) and ERK1/2 (PD98059) prevented the mitogenic activity induced by PMA for 15 min. Lactotroph cells stimulated with PMA for 15 min showed a translocation of PKCepsilon to membrane compartment and nucleus. These results thus establish that PKCepsilon plays an essential role in the lactotroph proliferation induced by PMA by triggering signals that involve ERK1/2 activation.


Histochemistry and Cell Biology | 2006

Budesonide effects on Clara cell under normal and allergic inflammatory condition

Felix D. Roth; Amado A. Quintar; Elisa M. Uribe Echevarría; Alicia Inés Torres; Agustín Aoki; Cristina A. Maldonado

Clara cells are nonciliated secretory cells implicated in lung homeostasis by the synthesis of immunomodulatory and host defense products, being one of the most important the CC16 protein. In this study, we compared the effects of budesonide (BUD), an inhaled corticoid, on Clara cell biology and its ability to reverse morphofunctional changes induced in an allergic airway hyper-responsiveness mouse model. In normal mice, exposure to BUD induced morphological changes compatible with a state of maximal differentiation on CC16 positive cells which developed a prominent cupola filled up with numerous mitochondria rich in CYP2E1, a member of the cytochrome P450 family. Consequently, CYP2E1 expression raised significantly. Exposure to OVA provoked hypertrophy of Clara cells and an increment in their number per millimeter of basal membrane. These cells acquired a mucous cell phenotype characterized by a notorious expansion of the secretory granular content. Synthesis of CC16 was greatly up-regulated concurrent to the finding of MUC5AC expression and the increment of epidermal growth factor receptor (EGFR). Mitochondrial content decreased significantly with a consequent reduction in CYP2E1 expression. After BUD treatment of OVA-challenged animals, the majority of Clara cells regained their normal morphology and functional characteristics; CYP2E1 levels raised when compared to the OVA exposed group. The BUD potential to differentiate Clara cells appeared to be important for the regression of the profound changes generated by the allergic injury. These results demonstrated the wide range of stimuli that can modify different aspects of Clara cell biology, and highlighted the effects of budesonide as a modulator of P450 enzymes, which probably contributes to a complementary antiinflamatory activity.


Histochemical Journal | 2001

Behaviour of a somatotroph population under a growth hormone releasing peptide treatment

Mónica Bonaterra; Ana Lucía De Paul; Claudia Gabriela Pellizas; Agustín Aoki; Alicia Inés Torres

In this investigation, we studied the effects of Momany peptide (GHRP-5), on somatotroph secretory activity. Acute and chronic administration of GHRP-5 provokes a significant release of growth hormone that can be closely correlated with ultrastructural changes in somatotroph populations. After 3, 5 and 7 days of GHRP-5 treatment, two somatotroph cell subpopulations coexist. One of them has an enhanced secretory activity and the other presents a quiescent appearance. Therefore, pituitary growth hormone content was not affected in the first seven days of GHRP-5 treatment. After 14 days, there was a significant depletion of growth hormone pituitary content coincident with the highest levels of serum growth hormone. These results concur with the surge of a new hyperactive somatotroph subtype characterised by numerous immature secretory granules that are discharged bypassing the maturation step. Acute and chronic treatments caused no changes in somatotroph cell density, the area immunostained for growth hormone and the levels of total mRNA for transcription factor pit-1.The results of pituitary cell cultures incubated with specific blockers for different signalling pathways demonstrated an involvement of the phospholipase C–inositol phosphate system in GHRP-5 stimulated somatotroph secretion.GHRP-5 treatment enhanced significantly the release of growth hormone, thereby eliciting ultrastructural modifications in somatotrophs that can be correlated with an increased secretory activity devoid of cell density changes.


Histochemical Journal | 1995

Changes in thyrotroph and somatotroph cell populations induced by stimulation and inhibition of their secretory activity

Alicia Inés Torres; H. A. Pasolli; Cristina A. Maldonado; Agustín Aoki

SummaryThe populations of cells which produce immunoreactive growth hormone (GH) and thyroid stimulating hormone (TSH) in the rat pituitary gland do not occur in fixed percentages but vary greatly under different physiological and experimental conditions. These variations can be directly correlated to the levels of stimulation and/or inhibition of the specific secretory activity. In both types of cell, sustained stimulation with trophic hormones or blockage of the feedback mechanisms induces remarkable growth in the specific cell population. Conversely, the interruption or inhibition of the stimulus thwarted the hormonal secretion and caused a massive degeneration of redundant cells. The stimulation of both GH and TSH cells is accompanied by an enhanced secretory activity as judged by their higher concentrations in serum and hypertrophy of the cytoplasmic organelles involved in synthesis and intracellular processing of the hormones. By contrast, interruption of the stimulus is followed by a variable degree of disruption of the cytoplasmic organization, including a sizable degeneration of cells. In stimulated rats, the concentrations of both GH and TSH decreased significantly in pituitary tissue due to mobilization of the hormonal stores contained in secretory granules. On the other hand, the withdrawal of stimuli blocked the hormonal release; this is reflected by the accumulation of both hormones and secretory granules in pituitary tissue. The strict correlation between the size of the GH and TSH populations with stimulation and inhibition of hormonal secretory activity reported in this investigation further supports the critical role played by the cell renewal process in endocrine secretion.


Toxicology and Applied Pharmacology | 2009

Bromocriptine induces parapoptosis as the main type of cell death responsible for experimental pituitary tumor shrinkage.

Claudia Mariela Palmeri; Juan Pablo Petiti; Liliana del Valle Sosa; Silvina Gutiérrez; Ana Lucía De Paul; Jorge Humberto Mukdsi; Alicia Inés Torres

Bromocriptine (Bc) produces pituitary tumoral mass regression which induces the cellular death that was classically described as apoptosis. However, recent works have related that other mechanisms of cell death could also be involved in the maintenance of physiological and pathological pituitary homeostasis. The aim of this study was to evaluate and characterize the different types of cell death in the involution induced by Bc in experimental rat pituitary tumors. The current study demonstrated that Bc induced an effective regression of estrogen induced pituitary tumors by a mechanism identified as parapoptosis. This alternative cell death was ultrastructurally recognized by extensive cytoplasmic vacuolization and an increased cell electron density, represented around 25% of the total pituitary cells counted. Furthermore, the results obtained from biochemical assays did not correspond to the criteria of apoptosis or necrosis. We also investigated the participation of p38, ERK1/2 and PKC delta in the parapoptotic pathway. An important observation was the significant increase in phosphorylated forms of these MAPKs, the holoenzyme and catalytic fragments of PKC delta in nuclear fractions after Bc administration compared to control and estrogen treated rats. Furthermore, the immunolocalization at ultrastructural level of these kinases showed a similar distribution pattern, with a prevalent localization at nuclear level in lactotrophs from Bc treated rats. In summary, we determined that parapoptosis is the predominant cell death type involved in the regression of pituitary tumors in response to Bc treatment, and may cause the activation of PKC delta, ERK1/2 and p38.


American Journal of Physiology-endocrinology and Metabolism | 2012

17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture

Liliana del Valle Sosa; Silvina Gutiérrez; Juan Pablo Petiti; Claudia Mariela Palmeri; Iván D. Mascanfroni; Marta Soaje; Ana Lucía De Paul; Alicia Inés Torres

Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.


Annals of Clinical Microbiology and Antimicrobials | 2011

Heterogeneous vancomycin-intermediate susceptibility in a community-associated methicillin-resistant Staphylococcus aureus epidemic clone, in a case of Infective Endocarditis in Argentina

Claudia Sola; Ricardo O Lamberghini; Marcos Ciarlantini; Ana L. Egea; P. Gonzalez; Elda G Diaz; Vanina Huerta; José Zamora González; Alejandra Corso; Mario Vilaro; Juan Pablo Petiti; Alicia Inés Torres; Ana Vindel; José Luis Bocco

BackgroundCommunity-Associated Methicillin Resistant Staphylococcus aureus (CA-MRSA) has traditionally been related to skin and soft tissue infections in healthy young patients. However, it has now emerged as responsible for severe infections worldwide, for which vancomycin is one of the mainstays of treatment. Infective endocarditis (IE) due to CA-MRSA with heterogeneous vancomycin-intermediate susceptibility-(h-VISA) has been recently reported, associated to an epidemic USA 300 CA-MRSA clone.Case PresentationWe describe the occurrence of h-VISA phenotype in a case of IE caused by a strain belonging to an epidemic CA-MRSA clone, distinct from USA300, for the first time in Argentina. The isolate h-VISA (SaB2) was recovered from a patient with persistent bacteraemia after a 7-day therapy with vancomycin, which evolved to fatal case of IE complicated with brain abscesses. The initial isolate-(SaB1) was fully vancomycin susceptible (VSSA). Although MRSA SaB2 was vancomycin susceptible (≤2 μg/ml) by MIC (agar and broth dilution, E-test and VITEK 2), a slight increase of MIC values between SaB1 and SaB2 isolates was detected by the four MIC methods, particularly for teicoplanin. Moreover, Sab2 was classified as h-VISA by three different screening methods [MHA5T-screening agar, Macromethod-E-test-(MET) and by GRD E-test] and confirmed by population analysis profile-(PAP). In addition, a significant increase in cell-wall thickness was revealed for SaB2 by electron microscopy. Molecular typing showed that both strains, SaB1 and SaB2, belonged to ST5 lineage, carried SCCmec IV, lacked Panton-Valentine leukocidin-(PVL) genes and had indistinguishable PFGE patterns (subtype I2), thereby confirming their isogenic nature. In addition, they were clonally related to the epidemic CA-MRSA clone (pulsotype I) detected in our country.ConclusionsThis report demonstrates the ability of this epidemic CA-MRSA clone, disseminated in some regions of Argentina, to produce severe and rapidly fatal infections such as IE, in addition to its ability to acquire low-level vancomycin resistance; for these reasons, it constitutes a new challenge for the Healthcare System of this country.

Collaboration


Dive into the Alicia Inés Torres's collaboration.

Top Co-Authors

Avatar

Ana Lucía De Paul

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Silvina Gutiérrez

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Juan Pablo Petiti

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Jorge Humberto Mukdsi

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Agustín Aoki

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Liliana del Valle Sosa

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Cristina A. Maldonado

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Claudia Mariela Palmeri

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

María Eugenia Sabatino

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge