Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia L. Carlson is active.

Publication


Featured researches published by Alicia L. Carlson.


Nature | 2012

Myocardial infarction accelerates atherosclerosis

Partha Dutta; Gabriel Courties; Ying Wei; Florian Leuschner; Rostic Gorbatov; Clinton S. Robbins; Yoshiko Iwamoto; Brian Thompson; Alicia L. Carlson; Timo Heidt; Maulik D. Majmudar; Felix Lasitschka; Martin Etzrodt; Peter G. Waterman; Michael T. Waring; Adam T. Chicoine; Anja M. van der Laan; Hans W.M. Niessen; Jan J. Piek; Barry B. Rubin; Jagdish Butany; James R. Stone; Hugo A. Katus; Sabina A. Murphy; David A. Morrow; Marc S. Sabatine; Claudio Vinegoni; Michael A. Moskowitz; Mikael J. Pittet; Peter Libby

During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.


Blood | 2009

CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy

Abdel Kareem Azab; Judith Runnels; Costas Pitsillides; Anne-Sophie Moreau; Feda Azab; Xavier Leleu; Xiaoying Jia; Renee Wright; Beatriz Ospina; Alicia L. Carlson; Clemens Alt; Nicholas Burwick; Aldo M. Roccaro; Hai T. Ngo; Mena Farag; Molly R. Melhem; Antonio Sacco; Nikhil C. Munshi; Teru Hideshima; Barrett J. Rollins; Kenneth C. Anderson; Andrew L. Kung; Charles P. Lin; Irene M. Ghobrial

The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.


Nature | 2011

In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche.

Joji Fujisaki; Wu J; Alicia L. Carlson; Lev Silberstein; Prabhakar Putheti; Rafael A. Larocca; Wenda Gao; Toshiki I. Saito; Lo Celso C; Tsuyuzaki H; Taichi Sato; Daniel Côté; Megan Sykes; Terry B. Strom; David T. Scadden; Charles P. Lin

Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (Treg) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Treg cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. Treg cells seem to participate in creating a localized zone where HSPCs reside and where Treg cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.


Nature | 2011

In vivo imaging of Treg cells providing immune privilegeto the haematopoietic stem-cell niche

Joji Fujisaki; Juwell Wu; Alicia L. Carlson; Lev Silberstein; Prabhakar Putheti; Rafael A. Larocca; Wenda Gao; Toshiki I. Saito; Cristina Lo Celso; Hitoshi Tsuyuzaki; Tatsuyuki Sato; Daniel Côté; Megan Sykes; Terry B. Strom; David T. Scadden; Charles P. Lin

Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (Treg) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Treg cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. Treg cells seem to participate in creating a localized zone where HSPCs reside and where Treg cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.


International Journal of Cancer | 2009

Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose

Nitin Nitin; Alicia L. Carlson; Timothy J. Muldoon; Adel K. El-Naggar; Ann M. Gillenwater; Rebecca Richards-Kortum

The clinical value of assessing tumor glucose metabolism via F‐18 fluorodeoxyglucose (FDG) PET imaging in oncology is well established; however, the poor spatial resolution of PET is a significant limitation especially for early stage lesions. An alternative technology is optical molecular imaging, which allows for subcellular spatial resolution and can be effectively used with topical contrast agents for imaging epithelial derived cancers. The goal of this study was to evaluate the potential of optical molecular imaging of glucose metabolism to aid in early detection of oral neoplasia. Fluorescently labeled deoxyglucose (2‐NBDG (2‐[N‐(7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)amino]‐2‐deoxy‐D‐glucose)) was applied topically to tissue phantoms, fresh oral biopsies (n = 32) and resected tumors specimens (n = 2). High‐resolution imaging results show that 2‐NBDG can be rapidly delivered to oral epithelium using topical application. In normal epithelium, the uptake of 2‐NBDG is limited to basal epithelial cells. In contrast, high‐grade dysplasia and cancers show uptake of 2‐NBDG in neoplastic cells throughout the lesion. Following 2‐NBDG labeling, the mean fluorescence intensity of neoplastic tissue averages 3.7 times higher than that of matched nonneoplastic oral biopsies in samples from 20 patients. Widefield fluorescence images of 8‐paired oral specimens were obtained pre and postlabeling with 2‐NBDG. Prior to labeling, neoplastic samples showed significantly lower autofluorescence than nonneoplastic samples. The fluorescence of neoplastic samples increased dramatically after labeling; the differential increase in fluorescence was on average 30 times higher in neoplastic samples than in normal samples. Topical application of 2‐NBDG can therefore provide image contrast in both widefield and high‐resolution fluorescence imaging modalities, highlighting its potential in early detection of oral neoplasia.


PLOS ONE | 2013

Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label

Alicia L. Carlson; Joji Fujisaki; Juwell Wu; Judith Runnels; Raphaël Turcotte; Cristina Lo Celso; David T. Scadden; Terry B. Strom; Charles P. Lin

We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4+ T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.


Journal of Biomedical Optics | 2011

Optical techniques for tracking multiple myeloma engraftment, growth, and response to therapy

Judith Runnels; Alicia L. Carlson; Costas Pitsillides; Brian Thompson; Juwell Wu; Joel A. Spencer; John M. J. Kohler; Abdel Kareem Azab; Anne-Sophie Moreau; Scott J. Rodig; Andrew L. Kung; Kenneth C. Anderson; Irene M. Ghobrial; Charles P. Lin

Multiple myeloma (MM), the second most common hematological malignancy, initiates from a single site and spreads via circulation to multiple sites in the bone marrow (BM). Methods to track MM cells both in the BM and circulation would be useful for developing new therapeutic strategies to target MM cell spread. We describe the use of complementary optical techniques to track human MM cells expressing both bioluminescent and fluorescent reporters in a mouse xenograft model. Long-term tumor growth and response to therapy are monitored using bioluminescence imaging (BLI), while numbers of circulating tumor cells are detected by in-vivo flow cytometry. Intravital microscopy is used to detect early seeding of MM cells to the BM, as well as residual cancer cells that remain in the BM after the bulk of the tumor is eradicated following drug treatment. Thus, intravital microscopy provides a powerful, albeit invasive, means to study cellular processes in vivo at the very early stage of the disease process and at the very late stage of therapeutic intervention when the tumor burden is too small to be detected by other imaging methods.


Journal of Plastic Reconstructive and Aesthetic Surgery | 2010

In vivo observations of cell trafficking in allotransplanted vascularized skin flaps and conventional skin grafts

Benjamin M. Horner; Kelly K. Ferguson; Mark A. Randolph; Joel A. Spencer; Alicia L. Carlson; Erica L. Hirsh; Charles P. Lin; Peter E. Butler

The problem of allogeneic skin rejection is a major limitation to more widespread application of clinical composite tissue allotransplantation (CTA). Previous research examining skin rejection has mainly studied rejection of conventional skin grafts (CSG) using standard histological techniques. The aim of this study was to objectively assess if there were differences in the immune response to CSG and primarily vascularized skin in composite tissue allotransplants (SCTT) using in vivo techniques in order to gain new insights in to the immune response to skin allotransplants. CSG and SCTT were transplanted from standard Lewis (LEW) ad Wistar Furth (WF) to recipient transgenic green fluorescent Lewis rats (LEW-GFP). In vivo confocal microscopy was used to observe cell trafficking within skin of the transplants. In addition, immunohistochemical staining was performed on skin biopsies to reveal possible expression of class II major histocompatibility antigens. A difference was observed in the immune response to SCTT compared to CSG. SCTT had a greater density cellular infiltrate than CSG (p<0.03) that was focused more at the center of the transplant (p<0.05) than at the edges, likely due to the immediate vascularization of the skin. Recipient dendritic cells were only observed in rejecting SCTT, not CSG. Furthermore, dermal endothelial class II MHC expression was only observed in allogeneic SCTT. The immune response in both SCTT and CSG was focused on targets in the dermis, with infiltrating cells clustering around hair follicles (CSG and SCTT; p<0.01) and blood vessels (SCTT; p<0.01) in allogeneic transplants. This study suggests that there are significant differences between rejection of SCTT and CSG that may limit the relevance of much of the historical data on skin graft rejection when applied to composite tissue allotransplantation. Furthermore, the use of novel in vivo techniques identified characteristics of the immune response to allograft skin not previously described, which may be useful in directing future approaches to overcoming allograft skin rejection.


Nature | 2011

In vivo imaging of T reg cells providing immune privilege to the haematopoietic stem-cell niche

Joji Fujisaki; Juwell Wu; Alicia L. Carlson; Lev Silberstein; Prabhakar Putheti; Rafael A. Larocca; Wenda Gao; Toshiki I. Saito; Cristina Lo Celso; Hitoshi Tsuyuzaki; Tatsuyuki Sato; Megan Sykes; Terry B. Strom; David T. Scadden; Charles P. Lin

Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (Treg) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Treg cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. Treg cells seem to participate in creating a localized zone where HSPCs reside and where Treg cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.


Journal of Immunology | 2015

Rapid Functional Decline of Activated and Memory Graft-versus-Host–Reactive T Cells Encountering Host Antigens in the Absence of Inflammation

Hao Wei Li; Giovanna Andreola; Alicia L. Carlson; Steven Shao; Charles P. Lin; Guiling Zhao; Megan Sykes

Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell–mediated immunotherapies.

Collaboration


Dive into the Alicia L. Carlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry B. Strom

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge