Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia Llorente is active.

Publication


Featured researches published by Alicia Llorente.


Journal of extracellular vesicles | 2015

Biological properties of extracellular vesicles and their physiological functions.

María Yáñez-Mó; Pia Siljander; Zoraida Andreu; Apolonija Bedina Zavec; Francesc E. Borràs; Edit I. Buzás; Krisztina Buzás; Enriqueta Casal; Francesco Cappello; Joana Carvalho; Eva Colas; Anabela Cordeiro da Silva; Stefano Fais; Juan M. Falcon-Perez; Irene M. Ghobrial; Bernd Giebel; Mario Gimona; Michael W. Graner; Ihsan Gursel; Mayda Gursel; Niels H. H. Heegaard; An Hendrix; Peter Kierulf; Katsutoshi Kokubun; Maja Kosanović; Veronika Kralj-Iglič; Eva-Maria Krämer-Albers; Saara Laitinen; Cecilia Lässer; Thomas Lener

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.


PLOS Biology | 2012

Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

Hina Kalra; Richard J. Simpson; Hong Ji; Elena Aikawa; Peter Altevogt; Philip W. Askenase; Vincent C. Bond; Francesc E. Borràs; Xandra O. Breakefield; Vivian Budnik; Edit I. Buzás; Giovanni Camussi; Aled Clayton; Emanuele Cocucci; Juan M. Falcon-Perez; Susanne Gabrielsson; Yong Song Gho; Dwijendra K. Gupta; H. C. Harsha; An Hendrix; Andrew F. Hill; Jameel M. Inal; Guido Jenster; Eva-Maria Krämer-Albers; Sai Kiang Lim; Alicia Llorente; Jan Lötvall; Antonio Marcilla; Lucia Mincheva-Nilsson; Irina Nazarenko

Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.


ACS Nano | 2016

Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine

Stefano Fais; Lorraine O'Driscoll; Francesc E. Borràs; Edit I. Buzás; Giovanni Camussi; Francesco Cappello; Joana Carvalho; Anabela Cordeiro da Silva; Hernando A. del Portillo; Samir El Andaloussi; Tanja Ficko Trček; Roberto Furlan; An Hendrix; Ihsan Gursel; Veronika Kralj-Iglič; Bertrand Kaeffer; Maja Kosanović; Marilena E. Lekka; Georg Lipps; Mariantonia Logozzi; Antonio Marcilla; Marei Sammar; Alicia Llorente; Irina Nazarenko; Carla Oliveira; Gabriella Pocsfalvi; Lawrence Rajendran; Graça Raposo; Eva Rohde; Pia Siljander

Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.


Biochimica et Biophysica Acta | 2012

Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells.

Nina Pettersen Hessvik; Santosh Phuyal; Andreas Brech; Kirsten Sandvig; Alicia Llorente

Exosomes are small extracellular vesicles released to the extracellular milieu through fusion of multivesicular bodies with the plasma membrane. These vesicles contain microRNAs and might therefore be vehicles transferring genetic information between cells. The aim of this study was to investigate whether there was a sorting of microRNAs into exosomes in the prostate cancer cell line PC-3. In addition, microRNAs in PC-3 cells and in the non-cancerous prostate cell line RWPE-1 were compared. Exosomes were isolated from the conditioned media from PC-3 cells by ultracentrifugation and inspected by electron microscopy. Total RNA was isolated and microRNAs were analyzed by microarray analysis and real time RT-PCR. MicroRNA microarray analysis revealed that the microRNA profile of PC-3 released exosomes was similar to the profile of the corresponding parent cells. Nevertheless, a sorting of certain microRNAs into exosomes was observed, and low number microRNAs (microRNAs with a low number in their name) were found to be underrepresented in these vesicles. Moreover, the miRNA profile of PC-3 cells resembled the miRNA profile of RWPE-1 cells, though some miRNAs were found to be differently expressed in these cell lines. These results show that exosomes from PC-3 cells, in agreement with previous reports from other cell types, contain microRNAs. Furthermore, this study supports the idea that there is a sorting of microRNAs into exosomes and adds a new perspective by pointing at the underrepresentation of low number miRNAs in PC-3 released exosomes.


Journal of Cell Science | 2004

Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line

Alicia Llorente; María C. de Marco; Miguel A. Alonso

MAL, BENE and MAL2 are raft-associated integral membrane proteins of the MAL family of proteins involved in membrane trafficking processes. We show here that the human prostate carcinoma PC-3 cell line expresses the transcripts for the three proteins simultaneously. MAL, BENE and MAL2 co-fractionated with caveolin-1 in the raft fraction of PC-3 cells, and immunofluorescence analysis showed colocalization of these proteins with caveolin-1 in a multivesicular intracellular compartment. Markers of the Golgi apparatus, early and recycling endosomes and lipid droplets were excluded from this compartment. Prostate epithelial cells contain vesicular organelles enriched in raft components named prostasomes that are secreted in the prostate fluid. Interestingly, the prostasome fraction isolated from the culture supernatant of PC-3 cells consisted mainly of 30-130 nm cup-shaped vesicles that were positive for MAL, caveolin-1 and CD59, a glycosylphosphatidylinositol-anchored protein previously found in prostasomes. CD63, an integral membrane protein found in multivesicular bodies/lysosomes and secretory granules was also found in PC-3 cell-derived prostasomes. Prostasome secretion was not inhibited by brefeldin A, a compound that blocks the conventional secretory pathway. However, wortmannin, an inhibitor of phosphatidylinositol-3 kinase, reduced the secretion of prostasomes in PC-3 cells. Our results suggest that MAL family proteins are associated with caveolin-1 in a multivesicular compartment that may be involved in prostasomal secretion in PC-3 cells.


Frontiers in Genetics | 2013

Exosomal miRNAs as Biomarkers for Prostate Cancer

Nina Pettersen Hessvik; Kirsten Sandvig; Alicia Llorente

miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms – associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles, or apoptotic bodies) or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, non-invasive diagnostic, and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen) has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.


Molecular & Cellular Proteomics | 2012

Proteomic Analysis of Microvesicles Released by the Human Prostate Cancer Cell Line PC-3

Kirsten Sandvig; Alicia Llorente

Cancer biomarkers are invaluable tools for cancer detection, prognosis, and treatment. Recently, microvesicles have appeared as a novel source for cancer biomarkers. We present here the results from a proteomic analysis of microvesicles released to the extracellular environment by the metastatic prostate cancer cell line PC-3. Using nanocapillary liquid chromatography-tandem mass spectrometry 266 proteins were identified with two or more peptide sequences. Further analysis showed that 16% of the proteins were classified as extracellular and that intracellular proteins were annotated in a variety of locations. Concerning biological processes, the proteins found in PC-3 cell-released microvesicles are mainly involved in transport, cell organization and biogenesis, metabolic process, response to stimulus, and regulation of biological processes. Several of the proteins identified (tetraspanins, annexins, Rab proteins, integrins, heat shock proteins, cytoskeletal proteins, 14–3-3 proteins) have previously been found in microvesicles isolated from other sources. However, some of the proteins seem to be more specific to the vesicular population released by the metastatic prostate cancer PC-3 cell line. Among these proteins are the tetraspanin protein CD151 and the glycoprotein CUB domain-containing protein 1. Interestingly, our results show these proteins are promising biomarkers for prostate cancer and therefore candidates for clinical validation studies in biological fluids.


Oncotarget | 2015

Identification of prostate cancer biomarkers in urinary exosomes

Anders Øverbye; Tore Skotland; Christian J. Koehler; Bernd Thiede; Therese Seierstad; Viktor Berge; Kirsten Sandvig; Alicia Llorente

Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.


FEBS Journal | 2014

Regulation of exosome release by glycosphingolipids and flotillins.

Santosh Phuyal; Nina Pettersen Hessvik; Tore Skotland; Kirsten Sandvig; Alicia Llorente

Exosomes are released by cells after fusion of multivesicular bodies with the plasma membrane. The molecular mechanism of this process is still unclear. We investigated the role of sphingolipids and flotillins, which constitute a raft‐associated family of proteins, in the release of exosomes. Interestingly, our results show that dl‐threo‐1‐phenyl‐2‐decanoylamino‐3‐morpholino‐1‐propanol, an inhibitor of glucosylceramide synthase, seemed to affect the composition of exosomes released from PC‐3 cells. However, the inhibition of ceramide formation from the de novo pathway by fumonisin B1 did not affect exosome secretion. Moreover, in contrast to findings obtained with other cell lines published so far, inhibition of neutral sphingomyelinase 2, an enzyme that catalyzes the formation of ceramide from sphingomyelin, did not inhibit the secretion of exosomes in PC‐3 cells. Finally, small interfering RNA‐mediated downregulation of flotillin‐1 and flotillin‐2 did not significantly change the levels of released exosomes as such, but seemed to affect the composition of exosomes. In conclusion, our results reveal the involvement of glycosphingolipids and flotillins in the release of exosomes from PC‐3 cells, and indicate that the role of ceramide in exosome formation may be cell‐dependent.


Progress in Lipid Research | 2017

Lipids in exosomes: Current knowledge and the way forward

Tore Skotland; Kirsten Sandvig; Alicia Llorente

Lipids are essential components of exosomal membranes, and it is well-known that specific lipids are enriched in exosomes compared to their parent cells. In this review we discuss current knowledge about the lipid composition of exosomes. We compare published data for different lipid classes in exosomes, and what is known about their lipid species, i.e. lipid molecules with different fatty acyl groups. Moreover, we elaborate on the hypothesis about hand-shaking between the very-long-chain sphingolipids in the outer leaflet and PS 18:0/18:1 in the inner leaflet, and we propose this to be an important mechanism in membrane biology, not only for exosomes. The similarity between the lipid composition of exosomes, HIV particles, and detergent resistant membranes, used as lipid rafts models, is also discussed. Furthermore, we summarize knowledge about the role of specific lipids and lipid metabolizing enzymes on the formation and release of exosomes. Finally, the use of exosomal lipids as biomarkers and how the lipid composition of exosomes may be of importance for researchers aiming to use exosomes as drug delivery vehicles is discussed. In conclusion, we have summarized what is presently known about lipids in exosomes and identified issues that should be taken into consideration in future studies.

Collaboration


Dive into the Alicia Llorente's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo van Deurs

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aija Linē

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viktor Berge

Oslo University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge