Alicia M. Kinoshita
San Diego State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alicia M. Kinoshita.
Environmental Toxicology and Chemistry | 2012
Eric D. Stein; Jeffrey S. Brown; Terri S. Hogue; M. P. Burke; Alicia M. Kinoshita
Contaminant loading associated with stormwater runoff from recently burned areas is poorly understood, despite the fact that it has the potential to affect downstream water quality. The goal of the present study is to assess regional patterns of runoff and contaminant loading from wildfires in urban fringe areas of southern California. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km(2) of natural open space between 2003 and 2009. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic aromatic hydrocarbons (PAHs). Results were compared to data from 16 unburned natural areas and six developed sites. Mean copper, lead, and zinc flux (kg/km(2)) were between 112- and 736-fold higher from burned catchments and total phosphorus was up to 921-fold higher compared to unburned natural areas. Polycyclic aromatic hydrocarbon flux was four times greater from burned areas than from adjacent urban areas. Ash fallout on nearby unburned watersheds also resulted in a threefold increase in metals and PAHs. Attenuation of elevated concentration and flux values appears to be driven mainly by rainfall magnitude. Contaminant loading from burned landscapes has the potential to be a substantial contribution to the total annual load to downstream areas in the first several years following fires.
Environmental Research Letters | 2015
Alicia M. Kinoshita; Terri S. Hogue
The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre- and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (α = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.
Journal of Hydrologic Engineering | 2016
Angela L. Bowman; Kristie J. Franz; Terri S. Hogue; Alicia M. Kinoshita
AbstractA satellite-based potential evapotranspiration (PET) product for streamflow simulations is tested for 15 forecast basins in the Upper Mississippi and Red River watersheds under the forecasting responsibility of the National Weather Service (NWS) North Central River Forecast Center (NCRFC). PET demand curves, which are long-term average estimates of daily PET, are derived using the National Aeronautics and Space Administration’s moderate resolution imaging spectroradiometer sensor (MODIS) on board the Terra and Aqua earth observation satellites. The PET demand curves (referred to as M-PET) are then used as input to the NWS Sacramento soil moisture accounting model (SACSMA) and simulated discharge and evapotranspiration (ET) are evaluated. Simulations using M-PET input are compared to simulations produced using the demand curves of the NCRFC (referred to as NC-PET). The M-PET data correlate better with PET estimated using tower data from three sites located within the study region compared to the NC...
Journal of Applied Remote Sensing | 2016
Kyle Knipper; Alicia M. Kinoshita; Terri S. Hogue
Abstract. The current study evaluates the application of a moderate resolution imaging spectroradiometer (MODIS) triangle-based method to estimate evapotranspiration (ET) in subalpine environments. Topographic corrections and improved soil moisture representation are applied to a previously developed net radiation (Rn) model and triangle algorithm to develop an 8-day average ET product based solely on satellite products. We evaluate modeled Rn and MODIS ET (MOD-ET) against ground-based values at four sites in the Sierra Nevada of northern California and also present a comparison between two monthly distributed ET datasets [operational simplified surface energy balance (SSEBop) and MODIS MOD16]. Modeled daily Rn results indicate a systematic underestimation (between −83 and −110 W/m2 bias). Consequently, Rn is bias-corrected before calculating MOD-ET. MOD-ET validation shows correlations between 0.15 and 0.45 with errors between 73 and 126 W/m2. MOD-ET and SSEBop ET report correlations of 0.36 and 0.20, respectively, on average, compared to ground-based monthly ET. MOD16 underestimates monthly totals, with bias values on the range of −14 to −144 W/m2. Semiarid conditions and scale differences between the MODIS pixel and station contribute to errors with respect to observation. Overall, MOD-ET provides reasonable ET estimates and may better capture temporal dynamics in environments undergoing chronic disturbance.
Earth Surface Processes and Landforms | 2017
Joan L. Florsheim; Anne Chin; Alicia M. Kinoshita; Samira Nourbakhshbeidokhti
Author(s): Florsheim, Joan L; Chin, Anne; Kinoshita, Alicia M; Nourbakhshbeidokhti, Samira | Abstract: Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post-wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi-temporal Terrestrial Laser Scanning and detailed field measurements. After the fire, a dry-season dry-ravel sediment pulse contributed sand and small gravel to hillslope-channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry-ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step-pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (t o / t c ) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing t o / t c . These storms during multi-year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine-grained post-fire channel sedimentation. This contrasts with wetter years, when post-fire sediment is transported from the fluvial system during the same season as the post-fire sediment pulse. Results of this short-term study highlight the complex and substantial effects of multi-year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer-term post-wildfire riparian ecosystem recovery.
Catena | 2011
Alicia M. Kinoshita; Terri S. Hogue
Environmental Monitoring and Assessment | 2013
M. P. Burke; Terri S. Hogue; Alicia M. Kinoshita; Janet Barco; C. Wessel; Eric D. Stein
Anthropocene | 2016
Alicia M. Kinoshita; Anne Chin; Gregory L. Simon; Christy E. Briles; Terri S. Hogue; Alison P. O’Dowd; Andrea K. Gerlak; Alejandra Uribe Albornoz
Journal of The American Water Resources Association | 2016
Muhammad G. Barik; Terri S. Hogue; Kristie J. Franz; Alicia M. Kinoshita
Journal of Hydrology | 2018
Patrick K. Poon; Alicia M. Kinoshita