Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia N. Lyle is active.

Publication


Featured researches published by Alicia N. Lyle.


Circulation | 2005

Nox1 Overexpression Potentiates Angiotensin II-Induced Hypertension and Vascular Smooth Muscle Hypertrophy in Transgenic Mice

Anna Dikalova; Roza E. Clempus; Bernard Lassègue; Guangjie Cheng; James McCoy; Sergey Dikalov; Alejandra San Martín; Alicia N. Lyle; David S. Weber; Daiana Weiss; W. Robert Taylor; Harald Schmidt; Gary K. Owens; J. David Lambeth; Kathy K. Griendling

Background— Reactive oxygen species (ROS) have been implicated in the development of cardiovascular pathologies. NAD(P)H oxidases (Noxes) are major sources of reactive oxygen species in the vessel wall, but the importance of individual Nox homologues in specific layers of the vascular wall is unclear. Nox1 upregulation has been implicated in cardiovascular pathologies such as hypertension and restenosis. Methods and Results— To investigate the pathological role of Nox1 upregulation in vascular smooth muscle, transgenic mice overexpressing Nox1 in smooth muscle cells (TgSMCnox1) were created, and the impact of Nox1 upregulation on the medial hypertrophic response during angiotensin II (Ang II)–induced hypertension was studied. These mice have increased expression of Nox1 protein in the vasculature, which is accompanied by increased superoxide production. Infusion of Ang II (0.7 mg/kg per day) into these mice for 2 weeks led to a potentiation of superoxide production compared with similarly treated negative littermate controls. Systolic blood pressure and aortic hypertrophy were also markedly greater in TgSMCnox1 mice than in their littermate controls. To confirm that this potentiation of vascular hypertrophy and hypertension was due to increased ROS formation, additional groups of mice were coinfused with the antioxidant Tempol. Tempol decreased the level of Ang II-induced aortic superoxide production and partially reversed the hypertrophic and hypertensive responses in these animals. Conclusions— These data indicate that smooth muscle-specific Nox1 overexpression augments the oxidative, pressor, and hypertrophic responses to Ang II, supporting the concept that medial Nox1 participates in the development of cardiovascular pathologies.


Circulation Research | 2009

Poldip2, a Novel Regulator of Nox4 and Cytoskeletal Integrity in Vascular Smooth Muscle Cells

Alicia N. Lyle; Nita N. Deshpande; Yoshihiro Taniyama; Bonnie Seidel-Rogol; Lily Pounkova; Pingfeng Du; Christopher Papaharalambus; Bernard Lassègue; Kathy K. Griendling

Rationale: NADPH oxidases (Noxes) regulate vascular physiology and contribute to the pathogenesis of vascular disease. In vascular smooth muscle cells (VSMCs), the interactions of individual Nox homologs with regulatory proteins are poorly defined. Objective: The objective of this study was to identify novel NADPH oxidase regulatory proteins. Methods and Results: Using a yeast 2-hybrid screen, we identified a novel p22phox binding partner, Poldip2, and demonstrated that it associates with p22phox, NADPH oxidase (Nox)1, and Nox4 and colocalizes with p22phox at sites of Nox4 localization. Poldip2 increases Nox4 enzymatic activity by 3-fold and positively regulates basal reactive oxygen species production in VSMCs (O2·−: 86.3±15.6% increase; H2O2: 40.7±4.5% increase). Overexpression of Poldip2 activates Rho (180.2±24.8% increase), strengthens focal adhesions, and increases stress fiber formation. These phenotypic changes are blocked by dominant negative Rho. In contrast, depletion of either Poldip2 or Nox4 results in a loss of these structures, which is rescued by adding back active Rho. Cell migration, which requires dynamic cytoskeletal remodeling, is impaired by either excess (70.1±14.7% decrease) or insufficient Poldip2 (63.5±5.9% decrease). Conclusions: These results suggest that Poldip2 associates with p22phox to activate Nox4, leading to regulation of focal adhesion turnover and VSMC migration, thus linking reactive oxygen species production and cytoskeletal remodeling. Poldip2 may be a novel therapeutic target for vascular pathologies with a significant VSMC migratory component, such as restenosis and atherosclerosis.


Journal of the American Heart Association | 2013

Cellular Encapsulation Enhances Cardiac Repair

Rebecca D. Levit; Natalia Landázuri; Edward A. Phelps; Milton E. Brown; Andrés J. García; Michael E. Davis; Giji Joseph; Robert Long; Susan A. Safley; Jonathan D. Suever; Alicia N. Lyle; Collin J. Weber; W. Robert Taylor

Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Massons Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases.


Free Radical Biology and Medicine | 2011

NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor

Abel Martin-Garrido; David I. Brown; Alicia N. Lyle; Anna Dikalova; Bonnie Seidel-Rogol; Bernard Lassègue; Alejandra San Martín; Kathy K. Griendling

In contrast to other cell types, vascular smooth muscle cells modify their phenotype in response to external signals. NADPH oxidase 4 (Nox4) is critical for maintenance of smooth muscle gene expression; however, the underlying mechanisms are incompletely characterized. Using smooth muscle α-actin (SMA) as a prototypical smooth muscle gene and transforming growth factor-β (TGF-β) as a differentiating agent, we examined Nox4-dependent signaling. TGF-β increases Nox4 expression and activity in human aortic smooth muscle cells (HASMC). Transfection of HASMC with siRNA against Nox4 (siNox4) abolishes TGF-β-induced SMA expression and stress fiber formation. siNox4 also significantly inhibits TGF-β-stimulated p38MAPK phosphorylation, as well as that of its substrate, mitogen-activated protein kinase-activated protein kinase-2. Moreover, the p38MAPK inhibitor SB-203580 nearly completely blocks the SMA increase induced by TGF-β. Inhibition of either p38MAPK or NADPH oxidase-derived reactive oxygen species impairs the TGF-β-induced phosphorylation of Ser103 on serum response factor (SRF) and reduces its transcriptional activity. Binding of SRF to myocardin-related transcription factor (MRTF) is also necessary, because downregulation of MRTF by siRNA abolishes TGF-β-induced SMA expression. Taken together, these data suggest that Nox4 regulates SMA expression via activation of a p38MAPK/SRF/MRTF pathway in response to TGF-β.


Journal of Biological Chemistry | 2007

Specificity of Olfactory Receptor Interactions with Other G Protein-coupled Receptors

Cristina F. Bush; Seth V. Jones; Alicia N. Lyle; Kenneth P. Minneman; Kerry J. Ressler; Randy A. Hall

Studies on olfactory receptor (OR) pharmacology have been hindered by the poor plasma membrane localization of most ORs in heterologous cells. We previously reported that association with the β2-adrenergic receptor (β2-AR) facilitates functional expression of the OR M71 at the plasma membrane of HEK-293 cells. In the present study, we examined the specificity of M71 interactions with other G protein-coupled receptors (GPCRs). M71 was co-expressed in HEK-293 cells with 42 distinct GPCRs, and the vast majority of these receptors had no significant effect on M71 surface expression. However, co-expression with three subtypes of purinergic receptor (P2Y1R, P2Y2R, and A2AR) resulted in markedly enhanced plasma membrane localization of M71. Agonist stimulation of M71 co-expressed with P2Y1R and P2Y2R activated the mitogen-activated protein kinase pathway via coupling of M71 to Gαo. We also examined the ability of β2-AR, P2Y1R, P2Y2R, and A2ARto interact with and regulate ORs beyond M71. We found that co-expression of β2-AR or the purinergic receptors enhanced the surface expression for an M71 subfamily member but not for several other ORs from different subfamilies. In addition, through chimeric receptor studies, we determined that the second transmembrane domain of β2-AR is necessary for β2-AR facilitation of M71 plasma membrane localization. These studies shed light on the specificity of OR interactions with other GPCRs and the mechanisms governing olfactory receptor trafficking.


Nature Communications | 2015

CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury.

Hirokuni Akahori; Vinit Karmali; Rohini Polavarapu; Alicia N. Lyle; Daiana Weiss; Eric Shin; Ahsan Husain; Nawazish Naqvi; Richard Van Dam; Anwer Habib; Cheol Ung Choi; Adrienne L. King; Kimberly Pachura; W. Robert Taylor; David J. Lefer; Aloke V. Finn

Macrophages are an essential component of the immune response to ischaemic injury and play an important role in promoting inflammation and its resolution, which is necessary for tissue repair. The type I transmembrane glycoprotein CD163 is exclusively expressed on macrophages, where it acts as a receptor for haemoglobin:haptoglobin complexes. An extracellular portion of CD163 circulates in the blood as a soluble protein, for which no physiological function has so far been described. Here we show that during ischaemia, soluble CD163 functions as a decoy receptor for TWEAK, a secreted pro-inflammatory cytokine of the tumour necrosis factor family, to regulate TWEAK-induced activation of canonical nuclear factor-κB (NF-κB) and Notch signalling necessary for myogenic progenitor cell proliferation. Mice with deletion of CD163 have transiently elevated levels of TWEAK, which stimulate muscle satellite cell proliferation and tissue regeneration in their ischaemic and non-ischaemic limbs. These results reveal a role for soluble CD163 in regulating muscle regeneration after ischaemic injury.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

Srinivasa Raju Datla; Daniel J. McGrail; Sasa Vukelic; Lauren P. Huff; Alicia N. Lyle; Lily Pounkova; Minyoung Lee; Bonnie Seidel-Rogol; Mazen Khalil; Lula Hilenski; Lance S. Terada; Michelle R. Dawson; Bernard Lassègue; Kathy K. Griendling

Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner.


Atherosclerosis | 2013

miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells

Ebony Washington Remus; Alicia N. Lyle; Daiana Weiss; Natalia Landázuri; Martina Weber; Charles D. Searles; W. Robert Taylor

OBJECTIVE Osteopontin (OPN) is a multifunctional protein found in abundance in atherosclerotic plaques. Angiotensin II (Ang II) promotes atherosclerosis by inducing adhesion and migration of vascular smooth muscle cells (VSMCs). MicroRNAs (miRNAs) are critical regulators of protein expression. However, the relationship between Ang II, miRNAs and OPN has yet to be fully explored. METHODS AND RESULTS Using cultured VSMCs, we found that Ang II increased cellular OPN protein expression 4 h after treatment by 420 ± 54% (p < 0.03) in a translation dependent manner. Sequence analysis revealed a putative binding site for mir181a and raised the possibility that miR181a is a potential regulatory mechanism for OPN expression. We demonstrated that Ang II decreased miR181a expression by 52 ± 7% (p < 0 .0001) and overexpressing miR181a inhibited Ang II induced increases in OPN protein expression by 69 ± 9% (p < 0.05). Furthermore, we demonstrated that miR181a is functionally important in that overexpression of miR181a inhibited VSMCs adhesion to collagen in response to Ang II as compared to controls by 36 ± 4%. (p < 0.05) CONCLUSIONS: These results demonstrate that miR181a regulates OPN expression and that altering miR181a expression may be a novel therapeutic approach to modulate OPN protein expression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Reactive Oxygen Species Regulate Osteopontin Expression in a Murine Model of Postischemic Neovascularization

Alicia N. Lyle; Giji Joseph; Aaron E. Fan; Daiana Weiss; Natalia Landázuri; W. Robert Taylor

Objective—Previous findings from our laboratory demonstrated that neovascularization was impaired in osteopontin (OPN) knockout animals. However, the mechanisms responsible for the regulation of OPN expression in the setting of ischemia remain undefined. Therefore, we sought to determine whether OPN is upregulated in response to ischemia and hypothesized that hydrogen peroxide (H2O2) is a critical component of the signaling mechanism by which OPN expression is upregulated in response to ischemia in vivo. Methods and Results—To determine whether ischemic injury upregulates OPN, we used a murine model of hindlimb ischemia. Femoral artery ligation in C57BL/6 mice significantly increased OPN expression and H2O2 production. Infusion of C57BL/6 mice with polyethylene glycol-catalase (10 000 U/kg per day) or the use of transgenic mice with smooth muscle cell-specific catalase overexpression blunted ischemia-induced OPN, suggesting ischemia-induced OPN expression is H2O2-dependent. Decreased H2O2-mediated OPN blunted reperfusion and collateral formation in vivo. In contrast, the overexpression of OPN using lentivirus restored neovascularization. Conclusion—Scavenging H2O2 blocks ischemia-induced OPN expression, providing evidence that ischemia-induced OPN expression is H2O2 dependent. Decreased OPN expression impaired neovascularization, whereas overexpression of OPN increased angiogenesis, supporting our hypothesis that OPN is a critical mediator of postischemic neovascularization and a potential novel therapeutic target for inducing new vessel growth.


Free Radical Biology and Medicine | 2016

NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis

Elyse Di Marco; Stephen P. Gray; Kit Kennedy; Cedric Szyndralewiez; Alicia N. Lyle; Bernard Lassègue; Kathy K. Griendling; Mark E. Cooper; Harald Schmidt; Karin Jandeleit-Dahm

Smooth muscle cell (SMC) proliferation and fibrosis contribute to the development of advanced atherosclerotic lesions. Oxidative stress caused by increased production or unphysiological location of reactive oxygen species (ROS) is a known major pathomechanism. However, in atherosclerosis, in particular under hyperglycaemic/diabetic conditions, the hydrogen peroxide-producing NADPH oxidase type 4 (NOX4) is protective. Here we aim to elucidate the mechanisms underlying this paradoxical atheroprotection of vascular smooth muscle NOX4 under conditions of normo- and hyperglycaemia both in vivo and ex vivo. Following 20-weeks of streptozotocin-induced diabetes, Apoe(-/-) mice showed a reduction in SM-alpha-actin and calponin gene expression with concomitant increases in platelet-derived growth factor (PDGF), osteopontin (OPN) and the extracellular matrix (ECM) protein fibronectin when compared to non-diabetic controls. Genetic deletion of Nox4 (Nox4(-/)(-)Apoe(-/-)) exacerbated diabetes-induced expression of PDGF, OPN, collagen I, and proliferation marker Ki67. Aortic SMCs isolated from NOX4-deficient mice exhibited a dedifferentiated phenotype including loss of contractile gene expression, increased proliferation and ECM production as well as elevated levels of NOX1-associated ROS. Mechanistic studies revealed that elevated PDGF signalling in NOX4-deficient SMCs mediated the loss of calponin and increase in fibronectin, while the upregulation of NOX1 was associated with the increased expression of OPN and markers of proliferation. These findings demonstrate that NOX4 actively regulates SMC pathophysiological responses in diabetic Apoe(-/-) mice and in primary mouse SMCs through the activities of PDGF and NOX1.

Collaboration


Dive into the Alicia N. Lyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christa Caesar

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge