Alicia Rodríguez-Gascón
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alicia Rodríguez-Gascón.
European Journal of Pharmaceutics and Biopharmaceutics | 2011
Diego Delgado; Ana del Pozo-Rodríguez; María Ángeles Solinís; Alicia Rodríguez-Gascón
The aim of our study was to evaluate the effect of protamine on the transfection capacity of solid lipid nanoparticles (SLNs) by correlating it to the internalization mechanisms and intracellular trafficking of the vectors. Vectors were prepared with SLN, DNA, and protamine. ARPE-19 and HEK-293 cells were used for the evaluation of the formulations. Protamine induced a 6-fold increase in the transfection of SLNs in retinal cells due to the presence of nuclear localization signals (NLS), its protection capacity, and a shift in the internalization mechanism from caveolae/raft-mediated to clathrin-mediated endocytosis. However, protamine produced an almost complete inhibition of transfection in HEK-293 cells. In spite of the high DNA condensation capacity of protamine and its content in NLS, this does not always lead to an improvement in cell transfection since it may impair some of the limiting steps of the transfection processes.
International Journal of Pharmaceutics | 2013
Ana Beloqui; Régis Coco; Mireille Alhouayek; María Ángeles Solinís; Alicia Rodríguez-Gascón; Giulio G. Muccioli; Véronique Préat
The challenge for the treatment of inflammatory bowel disease (IBD) is the delivery of the drug to the site of inflammation. Because nanoparticles have the ability to accumulate in inflamed regions, the aim of the present study was to evaluate nanostructured lipid carriers (NLCs) as nanoparticulate drug delivery systems for the treatment of IBD. Budesonide (BDS) was chosen as a candidate anti-inflammatory drug. BDS-loaded NLCs (BDS-NLC) produced by high-pressure homogenization had a size of 200 nm and a negative zeta potential. BDS-NLCs reduced the TNF-α secretion by activated macrophages (J774 cells). BDS-NLCs were more active in a murine model of dextran sulfate-induced colitis when compared with Blank-NLCs or a BDS suspension: BDS-NLCs decreased neutrophil infiltration, decreased the levels of the pro-inflammatory cytokines IL-1β and TNF-α in the colon and improved the histological scores of the colons. These data suggest that NLCs could be a promising alternative to polymeric nanoparticles as a targeted drug delivery system for IBD treatment.
International Journal of Pharmaceutics | 2014
Ana Beloqui Garcia; María Ángeles Solinís; Anne des Rieux; Véronique Préat; Alicia Rodríguez-Gascón
The main objectives of the present study were (i) to evaluate the effect of the mucus layer on saquinavir-loaded nanostructured lipid carriers (SQV-NLCs) uptake and (ii) to evaluate the mucopenetrating properties of dextran-protamine (Dex-Prot) coating on NLCs as per SQV permeability enhancement. Three different NLC formulations differing on particle size and surfactant content were obtained and coated with Dex-Prot complexes. SQV permeability was then evaluated across Caco-2 cell monolayers (enterocyte-like model) and Caco-2/HT29-MTX cell monolayers (mucus model). In the Caco-2 monolayers, Dex-Prot-NLCs increased up to 9-fold SQV permeability in comparison to uncoated nanoparticles. In the Caco-2/HT29-MTX monolayers, Dex-Prot-NLCs presenting a surface charge close to neutrality significantly increased SQV permeability. Hence, Dex-Prot complex coating is a promising strategy to ensure successful nanoparticle mucus-penetration, and thus, an efficient nanoparticle oral delivery. To our knowledge, this is the first time that Dex-Prot coating has been described as a nanoparticle muco-penetration enhancer across the intestinal mucus barrier.
European Journal of Pharmaceutics and Biopharmaceutics | 2015
M. Angeles Solinís; Ana del Pozo-Rodríguez; Paola Stephanie Apaolaza; Alicia Rodríguez-Gascón
Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although beginning to show encouraging results. Currently 33 clinical trials have been approved, are in progress, or have been completed. The most promising results have been obtained in clinical trials of ocular gene therapy for Leber Congenital Amaurosis, which have prompted the study of several ocular diseases that are good candidates to be treated with gene therapy: glaucoma, age-related macular degeneration, retinitis pigmentosa, or choroideremia. The success of gene therapy relies on the efficient delivery of the genetic material to target cells, achieving optimum long-term gene expression. Although viral vectors have been widely used, their potential risk associated mainly with immunogenicity and mutagenesis has promoted the design of non-viral vectors. In this review, the main administration routes and the most studied delivery systems, viral and non-viral, for ocular gene therapy are presented. The primary ocular disease candidates to be treated with gene therapy have been also reviewed, including the genetic basis and the most relevant preclinical and clinical studies.
Journal of Infection and Chemotherapy | 2015
Eduardo Asín-Prieto; Alicia Rodríguez-Gascón; Arantxazu Isla
The alarming increase of resistance against multiple currently available antibiotics is leading to a rapid lose of treatment options against infectious diseases. Since the antibiotic resistance is partially due to a misuse or abuse of the antibiotics, this situation can be reverted when improving their use. One strategy is the optimization of the antimicrobial dosing regimens. In fact, inappropriate drug choice and suboptimal dosing are two major factors that should be considered because they lead to the emergence of drug resistance and consequently, poorer clinical outcomes. Pharmacokinetic/pharmacodynamic (PK/PD) analysis in combination with Monte Carlo simulation allows to optimize dosing regimens of the antibiotic agents in order to conserve their therapeutic value. Therefore, the aim of this review is to explain the basis of the PK/PD analysis and associated techniques, and provide a brief revision of the applications of PK/PD analysis from a therapeutic point-of-view. The establishment and reevaluation of clinical breakpoints is the sticking point in antibiotic therapy as the clinical use of the antibiotics depends on them. Two methodologies are described to establish the PK/PD breakpoints, which are a big part of the clinical breakpoint setting machine. Furthermore, the main subpopulations of patients with altered characteristics that can condition the PK/PD behavior (such as critically ill, elderly, pediatric or obese patients) and therefore, the outcome of the antibiotic therapy, are reviewed. Finally, some recommendations are provided from a PK/PD point of view to enhance the efficacy of prophylaxis protocols used in surgery.
Clinical Pharmacokinectics | 2008
Arantxazu Isla; Alicia Rodríguez-Gascón; Iñaki F. Trocóniz; Lorea Bueno; María Ángeles Solinís; Javier Maynar; José Ángel Sánchez‐Izquierdo; José Luis Pedraz
AbstractBackground and objective: Meropenem is a carbapenem antibacterial frequently prescribed for the treatment of severe infections in critically ill patients, including those receiving continuous renal replacement therapy (CRRT). The objective of this study was to develop a population pharmacokinetic model of meropenem in critically ill patients undergoing CRRT. Patients and methods: A prospective, open-label study was conducted in 20 patients undergoing CRRT. Blood and dialysate-ultrafiltrate samples were obtained after administration of 500 mg, 1000 mg or 2000 mg of meropenem every 6 or 8 hours by intravenous infusion. The data were analysed under the population approach using NONMEM version V software. Age, bodyweight, dialysate plus ultrafiltrate flow, creatinine clearance (CLCR), the unbound drug fraction in plasma, the type of membrane, CRRT and the patient type (whether septic or severely polytraumatized) were the covariates studied. Results: The pharmacokinetics of meropenem in plasma were best described by a two-compartment model. CLCR was found to have a significant correlation with the apparent total clearance (CL) of the drug during the development of the covariate model. However, the influence of CLCR on CL differed between septic and polytraumatized patients (CL = 6.63 + 0.064 × CLCR for septic patients and CL = 6.63 + 0.72 × CLCR for polytraumatized patients). The volume of distribution of the central compartment (V1) was also dependent on the patient type, with values of 15.7 L for septic patients and 69.5 L for polytraumatized patients. The population clearance was 15 L/h, and the population apparent volume of distribution of the peripheral compartment was 19.8 L. From the base to the final model, the interindividual variabilities in CL and the V1 were significantly reduced. When computer simulations were carried out and efficacy indexes were calculated, it was shown that polytraumatized patients and septic patients with conserved renal function may not achieve adequate efficacy indexes to deal with specific infections. Continuous infusion of meropenem is recommended for critically septic patients and polytraumatized patients when pathogens with a minimum inhibitory concentration (MIC) of ≥4 mg/L are isolated. Infections caused by pathogens with an MIC of ≥8 mg/L should not be treated with meropenem in polytraumatized patients without or with moderate renal failure because excessive doses of meropenem would be necessary. Conclusion: A population pharmacokinetic model of meropenem in intensive care patients undergoing CRRT was developed and validated. CLCR and the patient type (whether septic or polytraumatized) were identified as significant covariates. The population pharmacokinetic model developed in the present study has been employed to recommend continuous infusion protocols in patients treated with CRRT.
Journal of Antimicrobial Chemotherapy | 2014
Eduardo Asín-Prieto; Alicia Rodríguez-Gascón; Iñaki F. Trocóniz; Amaia Soraluce; Javier Maynar; José Ángel Sánchez‐Izquierdo; Arantxazu Isla
OBJECTIVES To evaluate the pharmacokinetics of piperacillin/tazobactam in critically ill patients undergoing continuous renal replacement therapy (CRRT) and to assess the success of the therapy against susceptible bacteria. PATIENTS AND METHODS Sixteen patients undergoing CRRT with different degrees of renal function were included in the study. Blood and ultrafiltrate samples were drawn after administration of piperacillin/tazobactam (4/0.5 g) every 4, 6 or 8 h. The data were analysed by a population approach using NONMEM 7.2. The probability of target attainment (PTA) of maintaining free piperacillin levels above the MIC during the entire dosing interval was estimated by simulation of intermittent and continuous infusions. RESULTS The pharmacokinetics of piperacillin and tazobactam were best described by two-compartment models where the elimination of both drugs was conditioned by renal [dependent on creatinine clearance (CLCR)], non-renal and extracorporeal clearances. A 20 min infusion of piperacillin/tazobactam administered every 6 h provided high PTAs against MICs ≤ 32 mg/L in patients with severe renal failure. In patients with normal or moderate renal function PTAs ≥ 90% were only obtained up to MICs ≤ 8 mg/L with short infusions. However, simulating continuous infusion, higher probabilities of success were obtained against MICs of 32 and 16 mg/L when CLCR was 50 and 100 mL/min, respectively. CONCLUSIONS Population pharmacokinetic models have been developed and validated for piperacillin and tazobactam. Based on the pharmacokinetic/pharmacodynamic analysis, dosing recommendations are given considering the residual renal function of the patient and the MIC for the isolated bacteria.
BioMed Research International | 2014
Josune Torrecilla; Alicia Rodríguez-Gascón; María Ángeles Solinís; Ana del Pozo-Rodríguez
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
European Journal of Pharmaceutics and Biopharmaceutics | 2013
Ana Beloqui Garcia; María Ángeles Solinís; Araceli Delgado; Carmen Évora; A. del Pozo-Rodríguez; Alicia Rodríguez-Gascón
Nanoparticles for medical applications are frequently administered via parenteral administration. In this study, the tissue distribution of three lipid formulations based on Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats was evaluated. NLCs were prepared by a high pressure homogenization method and varied in terms of particle size, surface charge, and surfactant content. The (99m)Tc radiolabeled NLCs were intravenously administered to rats, and radioactivity levels in blood and tissues were measured. Cmax, AUC0-24, and MRT0-24 were obtained from the radioactivity level versus time profiles. The radiolabeled nanocarriers exhibited a long circulation time since radioactivity was detected in blood even 24 h post-injection. No differences on the MRT values in blood among the NLCs were observed, in spite of the different particle size and surface charge. The highest radioactivity levels were measured in the kidney, followed by the bone marrow, the liver, and the spleen. In the kidney, there was a higher accumulation of the positive nanoparticles, and in the liver, uptake of negative nanoparticles was higher than positive ones. NLCs with the largest particle size showed a higher uptake in the lung and lower accumulation in liver and bone marrow, in comparison with the smaller ones.
Journal of Microencapsulation | 2014
Ana Beloqui; María Ángeles Solinís; Araceli Delgado; Carmen Évora; Arantxazu Isla; Alicia Rodríguez-Gascón
Abstract The aim of this study was to develop a nanostructured lipid carriers (NLC) formulation containing spironolactone (SPN-NLCs), and to investigate its potential for the oral delivery of poorly water-soluble compounds. SPN-NLCs were orally administered to rabbits and the pharmacokinetics of spironolactone and its metabolites was evaluated. As reference formulation, we administered syrup. Spironolactone was only detected in a few plasma samples; hence, metabolite levels were employed for the pharmacokinetic analysis. The absolute bioavailability of 7α-TMS was significantly higher with the syrup than those obtained with the SPN-NLCs (0.7 versus 0.4, p < 0.05). However, no significant differences were observed in the bioavailability of canrenone, revealing a different canrenone/7α-TMS ratio depending on the administered formulation. Orally administered 99mTc-radiolabeled SPN-NLCs were mainly detected in the small intestine. These results suggest the retention of the nanocarriers in the underlying epithelium and further uptake by the epithelial cells.