Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia Roque is active.

Publication


Featured researches published by Alicia Roque.


BMC Biology | 2007

Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin

Mary Orrego; Imma Ponte; Alicia Roque; Natascha Buschati; Xavier Mora; Pedro Suau

BackgroundHistone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes) in physiological salt (0.14 M NaCl) at constant stoichiometry.ResultsThe H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region) DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin.ConclusionH1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl). The large differences in relative affinity of the H1 subtypes for chromatin suggest that differential affinity could be functionally relevant and thus contribute to the functional differentiation of the subtypes. The conservation of the relative affinities for SAR and non-SAR DNA, in spite of a strong preference for SAR sequences, indicates that differential affinity alone cannot be responsible for the heterogeneous distribution of some subtypes in cell nuclei.


Nucleic Acids Research | 2008

Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation

Alicia Roque; Inma Ponte; José Luis R. Arrondo; Pedro Suau

Linker histone H1 plays an important role in chromatin folding. Phosphorylation by cyclin-dependent kinases is the main post-translational modification of histone H1. We studied the effects of phosphorylation on the secondary structure of the DNA-bound H1 carboxy-terminal domain (CTD), which contains most of the phosphorylation sites of the molecule. The effects of phosphorylation on the secondary structure of the DNA-bound CTD were site-specific and depended on the number of phosphate groups. Full phosphorylation significantly increased the proportion of β-structure and decreased that of α-helix. Partial phosphorylation increased the amount of undefined structure and decreased that of α-helix without a significant increase in β-structure. Phosphorylation had a moderate effect on the affinity of the CTD for the DNA, which was proportional to the number of phosphate groups. Partial phosphorylation drastically reduced the aggregation of DNA fragments by the CTD, but full phosphorylation restored to a large extent the aggregation capacity of the unphosphorylated domain. These results support the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of H1 partial phosphorylation in interphase chromatin relaxation. More generally, our results suggest that the effects of phosphorylation are mediated by specific structural changes and are not simply a consequence of the net charge.


Journal of Physical Chemistry B | 2009

Role of Charge Neutralization in the Folding of the Carboxy-Terminal Domain of Histone H1

Alicia Roque; Inma Ponte; Pedro Suau

H1 linker histones are involved in chromatin structure and gene regulation. The carboxy-terminal domain (CTD) of histone H1 is very basic with approximately 40% Lys residues, approximately 75% of which are present as doublets. The CTD has little structure in diluted solution but becomes cooperatively folded upon interaction with DNA. The DNA-bound CTD contains alpha-helix, beta-structure, turns, and flexible regions. We studied the effects of charge neutralization on the secondary structure of the CTD independently of DNA interaction through deprotonation of the epsilon-amino groups of the Lys side chains at alkaline pH. Alkaline pH induces extensive folding of the CTD with proportions of secondary structure similar to those observed in the complexes with DNA. The CTD is phosphorylated by cyclin-dependent kinases. In the fully phosphorylated CTD, alkaline pH induces a higher amount of beta-sheet and a lower amount of alpha-helix, as observed in the complexes with DNA. These results, together with structure predictions, suggest that the increased hydrophobicity of Lys side chains accompanying charge neutralization is responsible for the folding of the CTD upon interaction with DNA.


BMC Structural Biology | 2011

Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study

Alicia Roque; Inma Ponte; Pedro Suau

BackgroundProtamines are small basic proteins that condense the DNA in mature spermatozoa. Typical protamines are of simple composition and very arginine-rich, usually in the range of 60-80%. Arginine residues are distributed in a number of stretches separated by neutral amino acids. We have used Fourier transform infrared spectroscopy (FTIR) to gain access for the first time to the secondary structure of protamines in sperm nuclei. This technique is particularly well suited to the study of DNA-bound protamine in whole nuclei since it is not affected by turbidity.ResultsWe show that DNA -bound salmon (salmine) and squid protamines contain α-helix, β-turns and a proportion of other structures not stabilized by intramolecular hydrogen bonding. No β-sheet was observed. In salmine, the α-helix amounted to ~20%, while in squid protamine it reached ~40%. In contrast, the structure not stabilized by intermolecular hydrogen bonding was more abundant in salmine (~40%) than in squid protamine (~20%). Both protamines contained ~40% β-turns. The different helical potential of salmine and squid protamine was confirmed by structure predictions and CD in the presence of trifluoroethanol.ConclusionDNA-bound protamine in sperm nuclei contains large amounts of defined secondary structure stabilized by intramolecular hydrogen bonding. Both salmine and squid protamine contain similar amounts of β-turns, but differ in the proportions of α-helix and non-hydrogen bonded conformations. In spite of the large differences in the proportions of secondary structure motifs between salmon and squid protamines, they appear to be equally efficient in promoting tight hexagonal packing of the DNA molecules in sperm nuclei.


PLOS ONE | 2016

Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study.

Silvia Petrezsélyová; María López-Malo; David Canadell; Alicia Roque; M. Carmen Marqués; Ester Vilaprinyo; Rui Alves; Lynne Yenush; Joaquín Ariño

Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase.


Biochimica et Biophysica Acta | 2016

Interplay between histone H1 structure and function.

Alicia Roque; Inma Ponte; Pedro Suau

H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide.


Nucleic Acids Research | 2015

Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

Rita Lopez; Bettina Sarg; Herbert Lindner; Salvador Bartolomé; Inma Ponte; Pedro Suau; Alicia Roque

Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.


Journal of Proteomics | 2015

Identification of novel post-translational modifications in linker histones from chicken erythrocytes.

Bettina Sarg; Rita Lopez; Herbert Lindner; Inma Ponte; Pedro Suau; Alicia Roque

UNLABELLED Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. BIOLOGICAL SIGNIFICANCE Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to establish the interplay between PTMs of linker and core histones in order to fully understand chromatin regulation. A protein sequence alignment summarizing the PTMs found to date in chicken, mouse, rat and humans showed that, while many of the modified positions were conserved between these species, the type of modification often varied depending on the species or the cellular type. This finding suggests an important role for the PTMs in the regulation of linker histone functions.


FEBS Letters | 2014

Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications

Jean-Michel Terme; Lluís Millán-Ariño; Regina Mayor; Neus Luque; Andrea Izquierdo-Bouldstridge; Alberto Bustillos; Cristina Sampaio; Jordi Canes; Isaura Font; Núria Sima; Mónica Sancho; Laura Torrente; Sonia Forcales; Alicia Roque; Pere Suau; Albert Jordan

In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post‐translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2‐T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4‐K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.


PLOS ONE | 2016

SETD7 Regulates the Differentiation of Human Embryonic Stem Cells

Julio Castaño; Cristina Morera; Borja Sesé; Stéphanie Boué; Carles Bonet-Costa; Mercè Martí; Alicia Roque; Albert Jordan; Maria J. Barrero

The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation.

Collaboration


Dive into the Alicia Roque's collaboration.

Top Co-Authors

Avatar

Pedro Suau

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Inma Ponte

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Rita Lopez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Imma Ponte

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Bettina Sarg

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Herbert Lindner

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Albert Jordan

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Joaquín Ariño

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

José Luis R. Arrondo

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Mary Orrego

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge