Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia Sanchez-Mazas is active.

Publication


Featured researches published by Alicia Sanchez-Mazas.


Human Immunology | 2008

Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies

Owen D. Solberg; Steven J. Mack; Alex K. Lancaster; Richard M. Single; Yingssu Tsai; Alicia Sanchez-Mazas; Glenys Thomson

This paper presents a meta-analysis of high-resolution human leukocyte antigen (HLA) allele frequency data describing 497 population samples. Most of the datasets were compiled from studies published in eight journals from 1990 to 2007; additional datasets came from the International Histocompatibility Workshops and from the AlleleFrequencies.net database. In all, these data represent approximately 66,800 individuals from throughout the world, providing an opportunity to observe trends that may not have been evident at the time the data were originally analyzed, especially with regard to the relative importance of balancing selection among the HLA loci. Population genetic measures of allele frequency distributions were summarized across populations by locus and geographic region. A role for balancing selection maintaining much of HLA variation was confirmed. Further, the breadth of this meta-analysis allowed the ranking of the HLA loci, with DQA1 and HLA-C showing the strongest balancing selection and DPB1 being compatible with neutrality. Comparisons of the allelic spectra reported by studies since 1990 indicate that most of the HLA alleles identified since 2000 are very-low-frequency alleles. The literature-based allele-count data, as well as maps summarizing the geographic distributions for each allele, are available online.


PLOS ONE | 2009

Impact of Selection and Demography on the Diffusion of Lactase Persistence

Pascale Gerbault; Celine Moret; Mathias Currat; Alicia Sanchez-Mazas

Background The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s) (LCT*P) are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. Methodology We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. Conclusions Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out if a positively selected lactase gene was carried at the front of the expansion wave during the Neolithic transition in Europe.


Archive | 2005

THE PEOPLING OF EAST ASIA: Putting together archaeology, linguistics and genetics

Laurent Sagart; Roger Blench; Alicia Sanchez-Mazas

Introduction 1. Examining the Farming/Language Dispersal Hypothesis in the East Asian Context 2. From the Mountains to the Valleys: Understanding Ethnolinguistic Geography in Southeast Asia 3. The Origin and Dispersal of Agriculture and Human Diaspora in East Asia 4. Recent Discoveries at a Tapenkeng Culture Site in Taiwan: Implications for the Problem of Austronesian Origins 5. The Contribution of Linguistic Palaeontology to the Homeland of Austroasiatic 6. Tibeto-Burman vs. Indo-Chinese: Implications for Population Geneticists, Archaeologists and Prehistorians 7. Kra-dai and Austronesian: Notes on Phonological Correspondences and Vocabulary Distribution 8. The Current Status of Austric: A Review and Evaluation of the Lexical and Morphosyntactic Evidence 9. Sino-Tibetan-Austronesian: An Updated and Improved Argument 10. Tai-Kadai as a Subgroup of Austronesian 11. Proto-East Asian and the Origin and Dispersal of the Languages of East and Southeast Asia and the Pacific 12. The Physical Anthropology of the Pacific, East Asia, and Southeast Asia: A Multivariate Craniometric Analysis 13. Genetic Diversity of Taiwans Indigenous Peoples: Possible Relationship with Insular Southeast Asia 14. Genetic Analysis of Minority Populations in China and its Implications for Multi-Regional Evolution 15. Comparing Linguistic and Genetic Relationships among East Asian Populations: A Study of the RH and GM Polymorphisms 16. Hla Genetic Diversity and Linguistic Variation in East Asia 17. A Synopsis of Extant Y Chromosome Diversity in East Asia and Oceania


PLOS ONE | 2011

HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events.

Stéphane Buhler; Alicia Sanchez-Mazas

Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajimas tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies. Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution.


Immunology | 2011

Immunogenetics as a tool in anthropological studies

Alicia Sanchez-Mazas; Marcelo Fernandez-Vina; Derek Middleton; Jill A. Hollenbach; Stéphane Buhler; Da Di; Raja Rajalingam; Jean-Michel Dugoujon; Steven J. Mack; Erik Thorsby

The genes coding for the main molecules involved in the human immune system – immunoglobulins, human leucocyte antigen (HLA) molecules and killer‐cell immunoglobulin‐like receptors (KIR) – exhibit a very high level of polymorphism that reveals remarkable frequency variation in human populations. ‘Genetic marker’ (GM) allotypes located in the constant domains of IgG antibodies have been studied for over 40 years through serological typing, leading to the identification of a variety of GM haplotypes whose frequencies vary sharply from one geographic region to another. An impressive diversity of HLA alleles, which results in amino acid substitutions located in the antigen‐binding region of HLA molecules, also varies greatly among populations. The KIR differ between individuals according to both gene content and allelic variation, and also display considerable population diversity. Whereas the molecular evolution of these polymorphisms has most likely been subject to natural selection, principally driven by host–pathogen interactions, their patterns of genetic variation worldwide show significant signals of human geographic expansion, demographic history and cultural diversification. As current developments in population genetic analysis and computer simulation improve our ability to discriminate among different – either stochastic or deterministic – forces acting on the genetic evolution of human populations, the study of these systems shows great promise for investigating both the peopling history of modern humans in the time since their common origin and human adaptation to past environmental (e.g. pathogenic) changes. Therefore, in addition to mitochondrial DNA, Y‐chromosome, microsatellites, single nucleotide polymorphisms and other markers, immunogenetic polymorphisms represent essential and complementary tools for anthropological studies.


Human Immunology | 2001

African diversity from the HLA point of view: influence of genetic drift, geography, linguistics, and natural selection.

Alicia Sanchez-Mazas

This study investigates the influence of different evolutionary factors on the patterns of human leukocyte antigen (HLA) genetic diversity within sub-Saharan Africa, and between Africa, Europe, and East Asia. This is done by comparing the significance of several statistics computed on equivalent population data sets tested for two HLA class II loci, DRB1 and DPB1, which strongly differ from each other by the shape of their allelic distributions. Similar results are found for the two loci concerning highly significant correlations between geographic and genetic distances at the world scale, high levels of genetic diversity within sub-Saharan Africa and East Asia, and low within Europe, and low genetic differentiations among the three broad continental areas, with no special divergence of Africa. On the other hand, DPB1 behaves as a neutral polymorphism, although a significant excess of heterozygotes is often observed for DRB1. Whereas the pattern observed for DPB1 is explained by geographic differentiations and genetic drift in isolated populations, balancing selection is likely to have prevented genetic differentiations among populations at the DRB1 locus. However, this selective effect did not disrupt the high correlation found between DRB1 and geography at the world scale, nor between DRB1 and linguistic differentiations at the African level.


Immunogenetics | 1997

Absence of the hemochromatosis gene Cys282Tyr mutation in three ethnic groups from Algeria (Mzab), Ethiopia, and Senegal

Marie-Paule Roth; Pilar Giraldo; Ghania Hariti; Estella S. Poloni; Alicia Sanchez-Mazas; Gian Franco De Stefano; Jean-Michel Dugoujon; Hélène Coppin

Abstract A Celtic origin for hemochromatosis, a common genetic iron metabolism disorder, has been postulated for a long time. To check whether the two mutations recently identified in the HLA-class I candidate gene for this disease were found only in Caucasians, we examined their frequencies in individuals originating from Algeria, Ethiopia, and Senegal. The presumably disease-causing mutation, responsible for the Cys282Tyr substitution, was not found in any member of these ethnic groups, although it was shown to be highly prevalent in populations of European ancestry. This geographic distribution supports the previously suggested Celtic origin for the disease. In contrast, the mutation responsible for the His63Asp substitution is not restricted to European populations. Although absent in the Senegalese, it was found on about 9% of the chromosomes of the Central Ethiopians and Algerians (Mzab) genotyped for this study. This second mutation, which probably represents a common variant unrelated to hemochromatosis, thus appears to have occurred earlier than that responsible for the Cys282Tyr substitution. More detailed population studies are needed to provide information on the age of these two mutations and eventually show how the hemochromatosis-causing mutation chronologically spread throughout Europe.


Tissue Antigens | 2010

Analysis of the HLA population data (AHPD) submitted to the 15th International Histocompatibility/Immunogenetics Workshop by using the Gene[rate] computer tools accommodating ambiguous data (AHPD project report)

Jose Manuel Nunes; Maria Eugenia Riccio; Stéphane Buhler; Da Di; Mathias Currat; Fabien Ries; A. J. Almada; Soraya Benhamamouch; O. Benitez; Angelica Canossi; Karima Fadhlaoui-Zid; Gottfried Fischer; Barbara Nelly Kervaire; Pascale Loiseau; D. C. M. de Oliveira; C. Papasteriades; D. Piancatelli; M. Rahal; Lucie Richard; Matilde Romero; J. Rousseau; Mirko Spiroski; Genc Sulcebe; Derek Middleton; Jean-Marie Tiercy; Alicia Sanchez-Mazas

During the 15th International Histocompatibility and Immunogenetics Workshop (IHIWS), 14 human leukocyte antigen (HLA) laboratories participated in the Analysis of HLA Population Data (AHPD) project where 18 new population samples were analyzed statistically and compared with data available from previous workshops. To that aim, an original methodology was developed and used (i) to estimate frequencies by taking into account ambiguous genotypic data, (ii) to test for Hardy-Weinberg equilibrium (HWE) by using a nested likelihood ratio test involving a parameter accounting for HWE deviations, (iii) to test for selective neutrality by using a resampling algorithm, and (iv) to provide explicit graphical representations including allele frequencies and basic statistics for each series of data. A total of 66 data series (1-7 loci per population) were analyzed with this standard approach. Frequency estimates were compliant with HWE in all but one population of mixed stem cell donors. Neutrality testing confirmed the observation of heterozygote excess at all HLA loci, although a significant deviation was established in only a few cases. Population comparisons showed that HLA genetic patterns were mostly shaped by geographic and/or linguistic differentiations in Africa and Europe, but not in America where both genetic drift in isolated populations and gene flow in admixed populations led to a more complex genetic structure. Overall, a fruitful collaboration between HLA typing laboratories and population geneticists allowed finding useful solutions to the problem of estimating gene frequencies and testing basic population diversity statistics on highly complex HLA data (high numbers of alleles and ambiguities), with promising applications in either anthropological, epidemiological, or transplantation studies.


BMC Evolutionary Biology | 2010

Human genetic differentiation across the Strait of Gibraltar

Mathias Currat; Estella S. Poloni; Alicia Sanchez-Mazas

BackgroundThe Strait of Gibraltar is a crucial area in the settlement history of modern humans because it represents a possible connection between Africa and Europe. So far, genetic data were inconclusive about the fact that this strait constitutes a barrier to gene flow, as previous results were highly variable depending on the genetic locus studied. The present study evaluates the impact of the Gibraltar region in reducing gene flow between populations from North-Western Africa and South-Western Europe, by comparing formally various genetic loci. First, we compute several statistics of population differentiation. Then, we use an original simulation approach in order to infer the most probable evolutionary scenario for the settlement of the area, taking into account the effects of both demography and natural selection at some loci.ResultsWe show that the genetic patterns observed today in the region of the Strait of Gibraltar may reflect an ancient population genetic structure which has not been completely erased by more recent events such as Neolithic migrations. Moreover, the differences observed among the loci (i.e. a strong genetic boundary revealed by the Y-chromosome polymorphism and, at the other extreme, no genetic differentiation revealed by HLA-DRB1 variation) across the strait suggest specific evolutionary histories like sex-mediated migration and natural selection. By considering a model of balancing selection for HLA-DRB1, we here estimate a coefficient of selection of 2.2% for this locus (although weaker in Europe than in Africa), which is in line with what was estimated from synonymous versus non-synonymous substitution rates. Selection at this marker thus appears strong enough to leave a signature not only at the DNA level, but also at the population level where drift and migration processes were certainly relevant.ConclusionsOur multi-loci approach using both descriptive analyses and Bayesian inferences lead to better characterize the role of the Strait of Gibraltar in the evolution of modern humans. We show that gene flow across the Strait of Gibraltar occurred at relatively high rates since pre-Neolithic times and that natural selection and sex-bias migrations distorted the demographic signal at some specific loci of our genome.


Philosophical Transactions of the Royal Society B | 2012

Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments

Alicia Sanchez-Mazas; Jean-François Lemaître; Mathias Currat

Human leucocyte antigen (HLA) loci have a complex evolution where both stochastic (e.g. genetic drift) and deterministic (natural selection) forces are involved. Owing to their extraordinary level of polymorphism, HLA genes are useful markers for reconstructing human settlement history. However, HLA variation often deviates significantly from neutral expectations towards an excess of genetic diversity. Because HLA molecules play a crucial role in immunity, this observation is generally explained by pathogen-driven-balancing selection (PDBS). In this study, we investigate the PDBS model by analysing HLA allelic diversity on a large database of 535 populations in relation to pathogen richness. Our results confirm that geographical distances are excellent predictors of HLA genetic differentiation worldwide. We also find a significant positive correlation between genetic diversity and pathogen richness at two HLA class I loci (HLA-A and -B), as predicted by PDBS, and a significant negative correlation at one HLA class II locus (HLA-DQB1). Although these effects are weak, as shown by a loss of significance when populations submitted to rapid genetic drift are removed from the analysis, the inverse relationship between genetic diversity and pathogen richness at different loci indicates that HLA genes have adopted distinct evolutionary strategies to provide immune protection in pathogen-rich environments.

Collaboration


Dive into the Alicia Sanchez-Mazas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Da Di

University of Geneva

View shared research outputs
Top Co-Authors

Avatar

Laurent Excoffier

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge