Alicja Jaworska
Norwegian Radiation Protection Authority
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alicja Jaworska.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2003
Michael Fenech; Stefano Bonassi; Julie Turner; Cecilia Lando; Marcello Ceppi; Wushou P. Chang; Nina Holland; Micheline Kirsch-Volders; Errol Zeiger; Maria Paola Bigatti; Claudia Bolognesi; Jia Cao; Giuseppe De Luca; Marina Di Giorgio; Lynnette R. Ferguson; Aleksandra Fucic; Omar Garcia Lima; Valeria Hadjidekova; Patrizia Hrelia; Alicja Jaworska; Gordana Joksic; A. P. Krishnaja; Tung Kwang Lee; Antonietta Martelli; Michael J. McKay; Lucia Migliore; Ekaterina Mirkova; W.-U. Müller; Youichi Odagiri; T. Orsière
One of the objectives of the HUman MicroNucleus (HUMN) project is to identify the methodological variables that have an important impact on micronucleus (MN) or micronucleated (MNed) cell frequencies measured in human lymphocytes using the cytokinesis-block micronucleus assay. In a previous study we had shown that the scoring criteria used were likely to be an important variable. To determine the extent of residual variation when laboratories scored cells from the same cultures using the same set of standard scoring criteria, an inter-laboratory slide-scoring exercise was performed among 34 laboratories from 21 countries with a total of 51 slide scorers involved. The results of this study show that even under these optimized conditions there is a great variation in the MN frequency or MNed cell frequency obtained by individual laboratories and scorers. All laboratories ranked correctly the MNed cell frequency in cells from cultures that were unirradiated, or exposed to 1 or 2Gy of gamma rays. The study also estimated that the intra-scorer median coefficient of variation for duplicate MNed cell frequency scores is 29% for unexposed cultures and 14 and 11% for cells exposed to 1 and 2Gy, respectively. These values can be used as a standard for quality or acceptability of data in future studies. Using a Poisson regression model it was estimated that radiation dose explained 67% of the variance, while staining method, cell sample, laboratory, and covariance explained 0.6, 0.3, 6.5, and 25.6% of the variance, respectively, leaving only 3.1% of the variance unexplained. As part of this exercise, nucleoplasmic bridges were also estimated by the laboratories; however, inexperience in the use of this biomarker of chromosome rearrangement was reflected in the much greater heterogeneity in the data and the unexplained variation estimated by the Poisson model. The results of these studies indicate clearly that even after standardizing culture and scoring conditions it will be necessary to calibrate scorers and laboratories if MN, MNed cell and nucleoplasmic bridge frequencies are to be reliably compared among laboratories and among populations.
Journal of Environmental Radioactivity | 2008
Jacqueline Garnier-Laplace; David Copplestone; Rodolphe Gilbin; Frédéric Alonzo; Philippe Ciffroy; Michael Gilek; A. Agüero; Mikael Björk; Deborah Oughton; Alicja Jaworska; Carl-Magnus Larsson; J. L. Hingston
The ERICA Integrated Approach requires that a risk assessment screening dose rate is defined for the risk characterisation within Tiers 1 and 2. At Tier 3, no numerical screening dose rate is used, and the risk characterisation is driven by methods that can evaluate the possible effects of ionising radiation on reproduction, mortality and morbidity. Species sensitivity distribution has been used to derive the ERICA risk assessment predicted no-effect dose rate (PNEDR). The method used was based on the mathematical processing of data from FRED (FASSET radiation effects database merged with the EPIC database to form FREDERICA) and resulted in a PNEDR of 10 microGy/h. This rate was assumed to ascribe sufficient protection of all ecosystems from detrimental effects on structure and function under chronic exposure. The value was weighed against a number of points of comparison: (i) PNEDR values obtained by application of the safety factor method, (ii) background levels, (iii) dose rates triggering effects on radioactively contaminated sites and (iv) former guidelines from literature reviews. In Tier 3, the effects analysis must be driven by the problem formulation and is thus highly case specific. Instead of specific recommendations on numeric values, guidance on the sorts of methods that may be applied for refined effect analysis is provided and illustrated.
Radiation Research | 2010
Carita Lindholm; Daniela Stricklin; Alicja Jaworska; Armi Koivistoinen; Wendla Paile; Eva Arvidsson; Joanna Deperas-Standylo; Andrzej Wojcik
Abstract The study was undertaken to establish a dose calibration curve for a practical PCC ring assay and to apply it in a simulated mass casualty accident. The PCC assay was validated against the conventional dicentric assay. A linear relationship was established for PCC rings after 60Co γ irradiation with doses up to 20 Gy. In the simulated accident experiment, 62 blood samples were analyzed with both the PCC ring assay and the conventional dicentric assay, applying a triage approach. Samples received various uniform and non-uniform (10–40% partial-body) irradiations up to doses of 13 Gy. The results indicated that both assays yielded good dose estimates for the whole-body exposure scenario, although in the lower-dose range (0–6 Gy) dicentric scoring resulted in more accurate whole-body estimates, whereas PCC rings were better in the high-dose range (>6 Gy). Neither assay was successful in identifying partial-body exposures, most likely due to the low numbers of cells scored in the triage mode. In conclusion, the study confirmed that the PCC ring assay is suitable for use as a biodosimeter after whole-body exposure to high doses of radiation. However, there are limitations for its use in the triage of people exposed to high, partial-body doses.
Radiation Protection Dosimetry | 2015
Ulrike Kulka; L. Ainsbury; Michael J. Atkinson; Stephen Barnard; R. W. Smith; Joan Francesc Barquinero; Leonardo Barrios; C. Bassinet; Christina Beinke; Alexandra Cucu; F. Darroudi; P. Fattibene; E. Bortolin; S. Della Monaca; Octávia Monteiro Gil; Eric Gregoire; Valeria Hadjidekova; Siamak Haghdoost; Vasiliki I. Hatzi; W. Hempel; R. Herranz; Alicja Jaworska; Carita Lindholm; Katalin Lumniczky; R. Mkacher; S. Mörtl; Alegría Montoro; Jayne Moquet; Mercedes Moreno; Mihaela Noditi
Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.
International Journal of Radiation Biology | 2014
Elizabeth A. Ainsbury; Jenna Al-hafidh; Ainars Bajinskis; Stephen Barnard; Joan Francesc Barquinero; Christina Beinke; Virginie de Gelder; Eric Gregoire; Alicja Jaworska; Carita Lindholm; David G. Lloyd; Jayne Moquet; Reetta Nylund; Ursula Oestreicher; Sandrine Roch-Lefèvre; Kai Rothkamm; Horst Romm; Harry Scherthan; Sylwester Sommer; Hubert Thierens; Charlot Vandevoorde; Anne Vral; Andrzej Wojcik
Abstract Purpose: The European Unions Seventh Framework Programme-funded project ‘Multi-disciplinary biodosimetric tools to manage high scale radiological casualties’ (MULTIBIODOSE) has developed a multiparametric approach to radiation biodosimetry, with a particular emphasis on triage of large numbers of potentially exposed individuals following accidental exposures. In November 2012, an emergency exercise took place which tested the capabilities of the MULTIBIODOSE project partners. The exercise described here had a dual purpose: Intercomparison of (i) three biodosimetric assays, and (ii) the capabilities of the seven laboratories, with regards to provision of triage status for suspected radiation exposed individuals. Materials and methods: Three biological dosimetry tools – the dicentric, micronucleus and gamma-H2AX (the phosphorylated form of member X of histone H2A, in response to DNA double-strand breaks) foci assays – were tested, in addition to provision of the triage status results (low exposure: < 1 Gy; medium exposure: 1–2 Gy; high exposure: > 2 Gy) by the MULTIBIODOSE software. The exercise was run in two modes: An initial triage categorisation of samples (based on the first dose estimates for each assay received from each laboratory) followed by collation of the full set of estimated doses (all the results from all modes of each assay carried out by the participating laboratories) calculated using as many modes of operation as possible of the different assays developed during the project. Simulated acute whole body and partial body exposures were included. Results: The results of the initial triage categorisation and the full comparison of assays and methods within and between laboratories are presented here. Conclusions: The data demonstrate that the MULTIBIODOSE approach of applying multiparametric tools to radiation emergencies is valid and effective.
Integrated Environmental Assessment and Management | 2011
François Bréchignac; Clare Bradshaw; Simon Carroll; Alicja Jaworska; Larry Kapustka; Luigi Monte; Deborah Oughton
This brief commentary summarizes the views of a working group assembled by the International Union of Radioecology to advance the approaches used to evaluate effects of radioactive materials in the environment. The key message in both the research needs and the recommendations for management of radioactive materials centers around the need to adopt an ecocentric approach that recognizes the interconnectedness of biota, including humans, and ecological processes.
International Journal of Radiation Biology | 2001
Alicja Jaworska; I. Szumiel; P. De Angelis; G. Olsen; J. Reitan
Purpose : To examine the possible associations between radiation sensitivity to doses ≤2Gy, and such features of lymphoid cell responses as apoptosis, expression of apoptosis regulatory proteins (Bcl-2 family) and cell cycle progression in relation to biological dosimetry. Materials and methods : The cell lines examined were: Epstein-Barr virus transformed lymphoid ataxia-telangiectasia (AT) cell lines, GM00717C, homozygous, and GM00736A, heterozygous, for ATM ; human pro-B lymphoblastic leukaemia, Reh; murine L5178Y lymphoma sublines, LY-R and LY-S. Assays performed following X-irradiation with doses from 0.1 to 2 Gy were: terminal deoxyribonucleotidyl transferase (TdT) assay to measure apoptotic fraction, DNA content analysis by flow cytometry to assess cell cycle distribution, trypan blue exclusion test to determine cell viability, cytochalasin block micronucleus assay to assess cytogenetic damage, and Western blotting to detect proteins from the Bcl-2 family. Results : The cell lines in the study were of different but rather high radiation sensitivity, which was unrelated to their propensity to undergo apoptosis or micronucleus frequency. The expression of apoptotic regulatory proteins from the Bcl-2 family (constitutive and expressed 4 or 24 h after irradiation) was not related to radiation sensitivity. Conclusion : None of the simple predictive tests used in the study, alone or evaluated together was suitable for detection of radiation hypersensitivity although cells known to be hypersensitive (LY-S and GM00717C) were included in the analysis.
Journal of Photochemistry and Photobiology B-biology | 2000
Terje Christensen; Ellen Bruzell Roll; Alicja Jaworska; Gunnar Kinn
Cells from the mouse lymphoma cell line L5178Y-R were exposed to blue light from phototherapy lamps in the presence of solutions of 160 microM bilirubin supplemented with serum albumin. HPLC analysis showed that the bilirubin solution was photooxidised as a function of increasing light dose. The cells were stained with trypan blue to score necrosis, and apoptosis was assayed by the terminal deoxynucleotide transferase assay (TdT) or by studying the nuclear structure in cells stained with propidium iodide. A rapidly developing apoptosis was observed after light doses killing 60-80% of the cells as judged from the trypan blue exclusion test. The fraction of apoptotic cells was smaller than the fraction of necrotic cells. Exposure of the cells to fractions of light at a high dose rate was compared to the effect of the same total dose at a lower dose rate given as a single fraction. No large differences were found, however, there was a tendency of a higher degree of necrosis as well as apoptosis in the cells receiving the light in fractions at a high dose rate.
International Journal of Radiation Biology | 2017
Ulrike Kulka; Michael Abend; Elizabeth A. Ainsbury; Christophe Badie; Joan Francesc Barquinero; Lleonard Barrios; Christina Beinke; E. Bortolin; Alexandra Cucu; Andrea De Amicis; Inmaculada Domínguez; P. Fattibene; Anne Marie Frøvig; Eric Gregoire; Kamile Guogyte; Valeria Hadjidekova; Alicja Jaworska; Ralf Kriehuber; Carita Lindholm; David G. Lloyd; Katalin Lumniczky; Fiona M. Lyng; Roberta Meschini; Simone Mörtl; Sara Della Monaca; Octávia Monteiro Gil; Alegría Montoro; Jayne Moquet; Mercedes Moreno; Ursula Oestreicher
Abstract Purpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. Results: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. Conclusions: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.
Mutagenesis | 2011
Turid Hertel-Aas; Deborah Oughton; Alicja Jaworska; Gunnar Brunborg
Methods for analysing oxidised DNA lesions [formamidopyrimidine glycosylase (Fpg)-sensitive sites] in coelomocytes and spermatogenic cells from the earthworm Eisenia fetida using the Fpg-modified comet assay were established. The DNA integrity (SSBs = strand breaks plus alkali labile sites and Fpg-sensitive sites) in cells from E. fetida continuously exposed to (60)Co gamma-radiation (dose rates 0.18-43 mGy/h) during two subsequent generations (F0 and F1) were measured and related to effects on reproduction end points which have already been reported. The data suggest a slight increase of Fpg-sensitive sites in spermatogenic cells from worms exposed at 11 mGy/h in the F0 generation but not in F1, whereas reduced reproduction had been observed at dose rates at or >4 mGy/h in F0 and at 11 mGy/h in F1. Using acute X-rays (41.9 Gy/h), dose-response relationships were established for SSBs in coelomocytes and spermatogenic cells exposed in vitro. In vivo DNA repair was studied by measuring the decrease in damage (SSBs and Fpg-sensitive sites) in coelomocytes and spermatogenic cells isolated from worms at different times (0-6 h) after acute X-ray exposure (4 Gy). SSBs were repaired in coelomocytes following biphasic kinetics, i.e. with a fast and a slow half-life (t(1/2)) of 36 min (95%) and 6.7 h (5%), respectively. Fpg-sensitive sites were repaired at considerably lower rates (t(1/2) = 4-5 h). In spermatogenic cells, SSB repair during the first hour was observed but a half-life could not be estimated. Repair of Fpg-sensitive sites could not be determined. In general, a reduced repair of Fpg-sensitive sites suggests a higher potential for accumulation of oxidised lesions, compared to SSBs, in earthworms exposed to radiation and other environmental contaminants. This is the first study comparing DNA damage with reproduction in earthworms exposed to ionising radiation.