Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicja Mortensen is active.

Publication


Featured researches published by Alicja Mortensen.


EFSA Journal | 2017

Update: use of the benchmark dose approach in risk assessment

Anthony Hardy; Diane Benford; Thorhallur Halldorsson; Michael Jeger; Katrine Helle Knutsen; Simon J. More; Alicja Mortensen; Hanspeter Naegeli; Hubert Noteborn; Colin Ockleford; Antonia Ricci; Guido Rychen; Vittorio Silano; Roland Solecki; Dominique Turck; Marc Aerts; Laurent Bodin; Allen Davis; Lutz Edler; Ursula Gundert‐Remy; Salomon Sand; Wout Slob; Bernard Bottex; José Cortiñas Abrahantes; Daniele Court Marques; George E.N. Kass; Josef Schlatter

Abstract The Scientific Committee (SC) reconfirms that the benchmark dose (BMD) approach is a scientifically more advanced method compared to the NOAEL approach for deriving a Reference Point (RP). Most of the modifications made to the SC guidance of 2009 concern the section providing guidance on how to apply the BMD approach. Model averaging is recommended as the preferred method for calculating the BMD confidence interval, while acknowledging that the respective tools are still under development and may not be easily accessible to all. Therefore, selecting or rejecting models is still considered as a suboptimal alternative. The set of default models to be used for BMD analysis has been reviewed, and the Akaike information criterion (AIC) has been introduced instead of the log‐likelihood to characterise the goodness of fit of different mathematical models to a dose–response data set. A flowchart has also been inserted in this update to guide the reader step‐by‐step when performing a BMD analysis, as well as a chapter on the distributional part of dose–response models and a template for reporting a BMD analysis in a complete and transparent manner. Finally, it is recommended to always report the BMD confidence interval rather than the value of the BMD. The lower bound (BMDL) is needed as a potential RP, and the upper bound (BMDU) is needed for establishing the BMDU/BMDL per ratio reflecting the uncertainty in the BMD estimate. This updated guidance does not call for a general re‐evaluation of previous assessments where the NOAEL approach or the BMD approach as described in the 2009 SC guidance was used, in particular when the exposure is clearly smaller (e.g. more than one order of magnitude) than the health‐based guidance value. Finally, the SC firmly reiterates to reconsider test guidelines given the expected wide application of the BMD approach.


EFSA Journal | 2018

Guidance on Uncertainty Analysis in Scientific Assessments

Diane Benford; Thorhallur Halldorsson; Michael Jeger; Helle Katrine Knutsen; Simon J. More; Hanspeter Naegeli; Hubert Noteborn; Colin Ockleford; Antonia Ricci; Guido Rychen; Josef Schlatter; Vittorio Silano; Roland Solecki; Dominique Turck; Maged Younes; Peter S. Craig; Andrew Hart; Natalie Von Goetz; Kostas Koutsoumanis; Alicja Mortensen; Bernadette Ossendorp; Laura Martino; Caroline Merten; Olaf Mosbach‐Schulz; Anthony Hardy

Abstract Uncertainty analysis is the process of identifying limitations in scientific knowledge and evaluating their implications for scientific conclusions. It is therefore relevant in all EFSAs scientific assessments and also necessary, to ensure that the assessment conclusions provide reliable information for decision‐making. The form and extent of uncertainty analysis, and how the conclusions should be reported, vary widely depending on the nature and context of each assessment and the degree of uncertainty that is present. This document provides concise guidance on how to identify which options for uncertainty analysis are appropriate in each assessment, and how to apply them. It is accompanied by a separate, supporting opinion that explains the key concepts and principles behind this Guidance, and describes the methods in more detail.


EFSA Journal | 2017

Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age

Anthony Hardy; Diane Benford; Thorhallur Halldorsson; Michael Jeger; Helle Katrine Knutsen; Simon J. More; Hanspeter Naegeli; Hubert Noteborn; Colin Ockleford; Antonia Ricci; Guido Rychen; Josef Schlatter; Vittorio Silano; Roland Solecki; Dominique Turck; Jean-Louis Bresson; Birgit Dusemund; Ursula Gundert‐Remy; Mathilde Kersting; Claude Lambré; André Penninks; Angelika Tritscher; Ine Waalkens‐Berendsen; Ruud Woutersen; Davide Arcella; Daniele Court Marques; Jean Lou Dorne; George E.N. Kass; Alicja Mortensen

Abstract Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health‐based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case‐by‐case basis, depending on whether the substance is added intentionally to food and is systemically available.


EFSA Journal | 2017

Re‐evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) as food additives

Maged Younes; Peter Aggett; Fernando Aguilar; Riccardo Crebelli; Metka Filipič; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Gunter Georg Kuhnle; Claude Lambré; Jean-Charles Leblanc; Inger Therese Lillegaard; Peter Moldeus; Alicja Mortensen; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Leon Brimer; Oliver Lindtner; Pasquale Mosesso; Anna Christodoulidou; Zsuzsanna Horvath; Federica Lodi; Birgit Dusemund

Abstract The present opinion deals with the re‐evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) when used as food additives. Alginic acid and its salts (E 400–E 404) are authorised food additives in the EU in accordance with Annex II and Annex III to Regulation (EC) No 1333/2008. Following the conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010, the Panel concluded that there was no need for a numerical Acceptable Daily Intake (ADI) for alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404), and that there was no safety concern at the level of the refined exposure assessment for the reported uses of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) as food additives. The Panel further concluded that exposure of infants and young children to alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) by the use of these food additives should stay below therapeutic dosages for these population groups at which side‐effects could occur. Concerning the use of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) in ‘dietary foods for special medical purposes and special formulae for infants’ (Food category 13.1.5.1) and ‘in dietary foods for babies and young children for special medical purposes as defined in Directive 1999/21/EC’ (Food category 13.1.5.2), the Panel further concluded that the available data did not allow an adequate assessment of the safety of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) in infants and young children consuming the food belonging to the categories 13.1.5.1 and 13.1.5.2.


EFSA Journal | 2017

Re‐evaluation of guar gum (E 412) as a food additive

Alicja Mortensen; Fernando Aguilar; Riccardo Crebelli; Alessandro Di Domenico; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Claude Lambré; Jean-Charles Leblanc; Oliver Lindtner; Peter Moldeus; Pasquale Mosesso; Agneta Oskarsson; Dominique Parent‐Massin; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Maged Younes; Leon Brimer; Paul Peters; Jacqueline Wiesner; Anna Christodoulidou; Federica Lodi; Alexandra Tard; Birgit Dusemund

Abstract The Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re‐evaluating the safety of guar gum (E 412) as a food additive. In the EU, guar gum was evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1970, 1974 and 1975, who allocated an acceptable daily intake (ADI) ‘not specified’. Guar gum has been also evaluated by the Scientific Committee for Food (SCF) in 1977 who endorsed the ADI ‘not specified’ allocated by JECFA. Following the conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010, the Panel considered that adequate exposure and toxicity data were available. Guar gum is practically undigested, not absorbed intact, but significantly fermented by enteric bacteria in humans. No adverse effects were reported in subchronic and carcinogenicity studies at the highest dose tested; no concern with respect to the genotoxicity. Oral intake of guar gum was well tolerated in adults. The Panel concluded that there is no need for a numerical ADI for guar gum (E 412), and there is no safety concern for the general population at the refined exposure assessment of guar gum (E 412) as a food additive. The Panel considered that for uses of guar gum in foods intended for infants and young children the occurrence of abdominal discomfort should be monitored and if this effect is observed doses should be identified as a basis for further risk assessment. The Panel considered that no adequate specific studies addressing the safety of use of guar gum (E 412) in food categories 13.1.5.1 and 13.1.5.2 were available. Therefore, the Panel concluded that the available data do not allow an adequate assessment of the safety of guar gum (E 412) in infants and young children consuming these foods for special medical purposes.


EFSA Journal | 2017

Re‐evaluation of glycerol (E 422) as a food additive

Alicja Mortensen; Fernando Aguilar; Riccardo Crebelli; Alessandro Di Domenico; Birgit Dusemund; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Jean-Charles Leblanc; Oliver Lindtner; Peter Moldeus; Pasquale Mosesso; Dominique Parent‐Massin; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Maged Younes; P.E. Boon; Dimitrios Chrysafidis; Rainer Gürtler; Paul Tobback; Ana Maria Rincon; Alexandra Tard; Claude Lambré

Abstract The ANS Panel provides a scientific opinion re‐evaluating the safety of glycerol (E 422) used as a food additive. In 1981, the Scientific Committee on Food (SCF) endorsed the conclusion from the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1976 of ‘acceptable daily intake (ADI) for man not specified’. The Panel concluded that glycerol has low acute toxicity and that local irritating effects of glycerol in the gastrointestinal tract reported in some gavage studies was likely due to hygroscopic and osmotic effects of glycerol. Glycerol did not raise concern with respect to genotoxicity and was of no concern with regard to carcinogenicity. Reproductive and prenatal developmental studies were limited to conclude on reproductive toxicity but no dose‐related adverse effects were reported. None of the animal studies available identified an adverse effect for glycerol. The Panel conservatively estimated the lowest oral dose of glycerol required for therapeutic effect to be 125 mg/kg bw per hour and noted that infants and toddlers can be exposed to that dose by drinking less than the volume of one can (330 mL) of a flavoured drink. The Panel concluded that there is no need for a numerical ADI and no safety concern regarding the use of glycerol (E 422) as a food additive at the refined exposure assessment for the reported uses. The Panel also concluded that the manufacturing process of glycerol should not allow the production of a food additive, which contains genotoxic and carcinogenic residuals at a level which would result in a margin of exposure below 10,000. The Panel recommended modification of the EU specifications for E 422. The Panel also recommended that more information on uses and use levels and analytical data should be made available to the Panel.


EFSA Journal | 2017

Scientific motivations and criteria to consider updating EFSA scientific assessments

Anthony Hardy; Diane Benford; Thorhallur Halldorsson; Michael Jeger; Katrine Helle Knutsen; Simon J. More; Alicja Mortensen; Hanspeter Naegeli; Hubert Noteborn; Colin Ockleford; Antonia Ricci; Guido Rychen; Josep R. Schlatter; Vittorio Silano; Roland Solecki; Dominique Turck; T.C.M. Brock; Sirpa Kärenlampi; Claude Lambré; Yolande Sanz; Tilemachos Goumperis; Juliane Kleiner; Daniela Maurici

Abstract EFSA is committed to assess and communicate the risks occurring in the food and feed chain from farm to fork and to provide other forms of scientific advice. This work, carried out by EFSA since its inception, has resulted in the adoption of thousands of scientific assessments. EFSA is obliged to re‐assess past assessments in specific regulatory contexts such as those on food and feed additives, active substances in plant protection products and genetically modified food and feed. In other sectors, the consideration for updating past EFSA scientific assessments is taken on an ad hoc basis mainly depending on specific requests by risk managers or on EFSA self‐tasking. If safety is potentially at stake in any area within EFSAs remit, the readiness to update past scientific assessments is important to keep EFSA at the forefront of science and to promote an effective risk assessment. Although this task might be very complex and resource demanding, it is fundamental to EFSAs mission. The present EFSA Scientific Committee opinion deals with scientific motivations and criteria to contribute to the timely updating of EFSA scientific assessments. It is recognised that the decision for updating should be agreed following careful consideration of all the relevant elements by the EFSA management, in collaboration with risk managers and stakeholders. The present opinion addresses the scientific approaches through which it would be possible for EFSA to increase the speed and effectiveness of the acquisition of new data, as well as, to improve the consequent evaluations to assess the relevance and reliability of new data in the context of contributing to the better definition of whether to update past scientific assessments.


EFSA Journal | 2018

Re‐evaluation of propane‐1,2‐diol (E 1520) as a food additive

Maged Younes; Peter Aggett; Fernando Aguilar; Riccardo Crebelli; Birgit Dusemund; Metka Filipič; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert-Remy; Gunter Georg Kuhnle; Jean-Charles Leblanc; Inger Therese Lillegaard; Peter Moldeus; Alicja Mortensen; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; P.E. Boon; Dimitrios Chrysafidis; Rainer Gürtler; Pasquale Mosesso; Dominique Parent‐Massin; Paul Tobback; Ana Maria Rincon; Alexandra Tard; Claude Lambré

Abstract The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re‐evaluating the safety of propane‐1,2‐diol (E 1520) when used as a food additive. In 1996, the Scientific Committee on Food (SCF) established an acceptable daily intake (ADI) of 25 mg/kg body weight (bw) per day for propane‐1,2‐diol. Propane‐1,2‐diol is readily absorbed from the gastrointestinal and is expected to be widely distributed to organs and tissues. The major route of metabolism is oxidation to lactic acid and pyruvic acid. At high concentrations, free propane‐1,2‐diol is excreted in the urine. No treatment‐related effects were observed in subchronic toxicity studies. The available data did not raise concern with respect to genotoxicity. Haematological changes suggestive of an increased red blood cell destruction with a compensatory increased rate of haematopoiesis were observed at the highest dose level (5,000 mg/kg bw per day) in a 2‐year study in dogs. No adverse effects were reported in a 2‐year chronic study in rats with propane‐1,2‐diol (up to 2,500 mg/kg bw per day). The SCF used this study to derive the ADI. No adverse effects were observed in the available reproductive and developmental toxicity studies. Propane‐1,2‐diol (E 1520) is authorised according to Annex III in some food additives, food flavourings, enzymes and nutrients and it is then carried over to the final food. Dietary exposure to E 1520 was assessed based on the use levels and analytical data. The Panel considered that for the food categories for which information was available, the exposure was likely to be overestimated. Considering the toxicity database, the Panel concluded that there was no reason to revise the current ADI of 25 mg/kg bw per day. The Panel also concluded that the mean and the high exposure levels (P95) of the brand‐loyal refined exposure scenario did not exceed the ADI in any of the population groups from the use of propane‐1,2‐diol (E 1520) at the reported use levels and analytical results.


EFSA Journal | 2017

Approach followed for the refined exposure assessment as part of the safety assessment of food additives under re‐evaluation

Alicja Mortensen; Fernando Aguilar; Riccardo Crebelli; Alessandro Di Domenico; Birgit Dusemund; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Claude Lambré; Oliver Lindtner; Peter Moldeus; Pasquale Mosesso; Dominique Parent‐Massin; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Maged Younes; P.E. Boon; Christina Tlustos; Davide Arcella; Alexandra Tard; Jean-Charles Leblanc

Abstract This statement describes the approach followed by the EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) for performing refined exposure assessment in the framework of the re‐evaluation of already permitted food additives. Estimation of exposure is obtained through combination of different type of data originating from different sources: food additive concentration is obtained from information provided to EFSA on use levels and/or information obtained by means of analytical measurements. In recent years, the use of market research data has also been used. The statement provides also a description of the three different scenarios used for the exposure assessment of food additives under re‐evaluation, from the more conservative regulatory maximum level exposure assessment scenario to more refined ones. Lastly, a description is provided on the approach used for the uncertainty analysis which accompanies the exposure assessment.


EFSA Journal | 2017

Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use

Maged Younes; Peter Aggett; Fernando Aguilar; Riccardo Crebelli; Birgit Dusemund; Metka Filipič; Maria Jose Frutos; Pierre Galtier; Ursula Gundert‐Remy; Gunter Georg Kuhnle; Claude Lambré; Jean-Charles Leblanc; Inger Therese Lillegaard; Peter Moldeus; Alicja Mortensen; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Lieve Herman; Paul Tobback; Fabiola Pizzo; Camilla Smeraldi; Alexandra Tard; Adamantia Papaioannou; David Gott

Abstract The present scientific opinion deals with the evaluation of the safety of nisin (E 234) in the light of new toxicological data and with the proposed extension of use in unripened cheese and heat‐treated meat products. Nisin (E 234) is currently an authorised food additive in the EU under Annex II of Regulation (EC) 1333/2008 for use in several food categories. The safety of nisin (E 234) as a food additive has been evaluated in 2006 by the EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food, where an acceptable daily intake (ADI) of 0.13 mg/kg body weight (bw) was confirmed as previously established by Scientific Committee on Food (SCF). In addition to the studies previously evaluated by EFSA in 2006, the Panel considered in the present opinion, data from a new subchronic toxicity study. No adverse effects were observed in a repeated dose oral toxicity study in which rats were administered nisin A for 90 days. A no observed adverse effect level (NOAEL) of 225 mg nisin A/kg bw per day, the highest dose tested, was identified for this study. Using this NOAEL, an ADI of 1 mg nisin A/kg bw per day for nisin (E 234) was calculated applying a default uncertainty factor of 200 for extrapolation of subchronic to chronic exposure and inter‐ and intra‐species variability. The Panel calculated exposure estimates for both the current and the proposed uses based on the data available in the EFSA Comprehensive Database. The Panel considered that the overall exposure estimate was below the new ADI for nisin A for all population groups. The Panel concluded that the proposed extension of use of nisin (E 234) as a food additive in unripened cheese (at maximum level of 12 mg/kg) and in heat‐treated meat products (at maximum level of 25 mg/kg) would not be of safety concern.

Collaboration


Dive into the Alicja Mortensen's collaboration.

Top Co-Authors

Avatar

David Gott

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Birgit Dusemund

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Fernando Aguilar

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Pierre Galtier

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Jean-Charles Leblanc

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riccardo Crebelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Maged Younes

World Health Organization

View shared research outputs
Top Co-Authors

Avatar

Peter Moldeus

European Food Safety Authority

View shared research outputs
Researchain Logo
Decentralizing Knowledge