Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alina M. Schimpf is active.

Publication


Featured researches published by Alina M. Schimpf.


ACS Nano | 2014

Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.

Alina M. Schimpf; Niket Thakkar; Carolyn E. Gunthardt; David J. Masiello; Daniel R. Gamelin

Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.


Journal of the American Chemical Society | 2015

Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals.

Alina M. Schimpf; Sebastien D. Lounis; Evan L. Runnerstrom; Delia J. Milliron; Daniel R. Gamelin

Plasmonic doped semiconductor nanocrystals promise exciting opportunities for new technologies, but basic features of the relationships between their structures, compositions, electronic structures, and optical properties remain poorly understood. Here, we report a quantitative assessment of the impact of composition on the energies of localized surface plasmon resonances (LSPRs) in colloidal tin-doped indium oxide (Sn:In2O3, or ITO) nanocrystals. Using a combination of aliovalent doping and photodoping, the effects of added electrons and impurity ions on the energies of LSPRs in colloidal In2O3 and ITO nanocrystals have been evaluated. Photodoping allows electron densities to be tuned post-synthetically in ITO nanocrystals, independent of their Sn content. Because electrons added photochemically are easily titrated, photodoping also allows independent quantitative determination of the dependence of the LSPR energy on nanocrystal composition and changes in electron density. The data show that ITO LSPR energies are affected by both electron and Sn concentrations, with composition yielding a broader plasmon tuning range than achievable by tuning carrier densities alone. Aspects of the photodoping energetics, as well as magneto-optical properties of these ITO LSPRs, are also discussed.


Accounts of Chemical Research | 2015

Electronic Doping and Redox-Potential Tuning in Colloidal Semiconductor Nanocrystals

Alina M. Schimpf; Kathryn E. Knowles; Gerard M. Carroll; Daniel R. Gamelin

Electronic doping is one of the most important experimental capabilities in all of semiconductor research and technology. Through electronic doping, insulating materials can be made conductive, opening doors to the formation of p-n junctions and other workhorses of modern semiconductor electronics. Recent interest in exploiting the unique physical and photophysical properties of colloidal semiconductor nanocrystals for revolutionary new device technologies has stimulated efforts to prepare electronically doped colloidal semiconductor nanocrystals with the same control as available in the corresponding bulk materials. Despite the impact that success in this endeavor would have, the development of general and reliable methods for electronic doping of colloidal semiconductor nanocrystals remains a long-standing challenge. In this Account, we review recent progress in the development and characterization of electronically doped colloidal semiconductor nanocrystals. Several successful methods for introducing excess band-like charge carriers are illustrated and discussed, including photodoping, outer-sphere electron transfer, defect doping, and electrochemical oxidation or reduction. A distinction is made between methods that yield excess band-like carriers at thermal equilibrium and those that inject excess charge carriers under thermal nonequilibrium conditions (steady state). Spectroscopic signatures of such excess carriers, accessible by both equilibrium and nonequilibrium methods, are reviewed and illustrated. A distinction is also proposed between the phenomena of electronic doping and redox-potential shifting. Electronically doped semiconductor nanocrystals possess excess band-like charge carriers at thermal equilibrium, whereas redox-potential shifting affects the potentials at which charge carriers are injected under nonequilibrium conditions, without necessarily introducing band-like charge carriers at equilibrium. Detection of the key spectroscopic signatures of band-like carriers allows distinction between these two regimes. Both electronic doping and redox-potential shifting can be powerful tools for tuning the performance of nanocrystals in electronic devices. Finally, key chemical challenges associated with nanocrystal electronic doping are briefly discussed. These challenges are centered largely on the availability of charge-carrier reservoirs with suitable redox potentials and on the relatively poor control over nanocrystal surface traps. In most cases, the Fermi levels of colloidal nanocrystals are defined by the redox properties of their surface traps. Control over nanocrystal surface chemistries is therefore essential to the development of general and reliable strategies for electronically doping colloidal semiconductor nanocrystals. Overall, recent progress in this area portends exciting future advances in controlling nanocrystal compositions, surface chemistries, redox potentials, and charge states to yield new classes of electronic nanomaterials with attractive physical properties and the potential to stimulate unprecedented new semiconductor technologies.


Journal of the American Chemical Society | 2013

Controlling Carrier Densities in Photochemically Reduced Colloidal ZnO Nanocrystals: Size Dependence and Role of the Hole Quencher

Alina M. Schimpf; Carolyn E. Gunthardt; Jeffrey D. Rinehart; James M. Mayer; Daniel R. Gamelin

Photodoped colloidal ZnO nanocrystals are model systems for understanding the generation and physical or chemical properties of excess delocalized charge carriers in semiconductor nanocrystals. Typically, ZnO photodoping is achieved photochemically using ethanol (EtOH) as a sacrificial reductant. Curiously, different studies have reported over an order of magnitude spread in the maximum number of conduction-band electrons that can be accumulated by photochemical oxidation of EtOH. Here, we demonstrate that this apparent discrepancy results from a strong size dependence of the average maximum number of excess electrons per nanocrystal, . We demonstrate that increases in proportion to nanocrystal volume, such that the maximum carrier density remains constant for all nanocrystal sizes. is found to be largely insensitive to precise experimental conditions such as solvent, ligands, protons or other cations, photolysis conditions, and nanocrystal or EtOH concentrations. These results reconcile the broad range of literature results obtained with EtOH as the hole quencher. Furthermore, we demonstrate that depends on the identity of the hole quencher, and is thus not an intrinsic property of the multiply reduced ZnO nanocrystals themselves. Using a series of substituted borohydride hole quenchers, we show that it is possible to increase the nanocrystal carrier densities over 4-fold relative to previous photodoping reports. When excess lithium and potassium triethylborohydrides are used in the photodoping, formation of Zn(0) is observed. The relationship between metallic Zn(0) formation and ZnO surface electron traps is discussed.


Journal of the American Chemical Society | 2013

Photochemical Electronic Doping of Colloidal CdSe Nanocrystals

Jeffrey D. Rinehart; Alina M. Schimpf; Amanda L. Weaver; Alicia W. Cohn; Daniel R. Gamelin

A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectroscopic signatures associated with NC n-doping, including a bleach at the absorption edge, appearance of a new IR absorption band, and Auger quenching of the excitonic photoluminescence. Although stable under anaerobic conditions, these spectroscopic changes are all reversed completely upon exposure of the n-doped NCs to air. Chemical titration of the added electrons confirms previous correlations between absorption bleach and electron accumulation and provides a means of quantifying the extent of electron trapping in some NCs. The generality of this photodoping method is demonstrated by initial results on colloidal CdE (E = S, Te) NCs as well as on CdSe quantum dot films.


ACS Nano | 2014

Low Capping Group Surface Density on Zinc Oxide Nanocrystals

Carolyn N. Valdez; Alina M. Schimpf; Daniel R. Gamelin; James M. Mayer

The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.


Nano Letters | 2014

Size Dependence of Negative Trion Auger Recombination in Photodoped CdSe Nanocrystals

Alicia W. Cohn; Jeffrey D. Rinehart; Alina M. Schimpf; Amanda L. Weaver; Daniel R. Gamelin

We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.4 nm) to 2.2 ns (R = 3.2 nm). The data reveal a substantially stronger size dependence than found for bi- or multiexciton Auger recombination in CdSe or other semiconductor nanocrystals, scaling in proportion to R(4.3).


Journal of the American Chemical Society | 2016

Proton-Controlled Reduction of ZnO Nanocrystals: Effects of Molecular Reductants, Cations, and Thermodynamic Limitations

Carolyn N. Valdez; Alina M. Schimpf; Daniel R. Gamelin; James M. Mayer

Charge carriers (electrons) were added to ZnO nanocrystals (NCs) using the molecular reductants CoCp*2 and CrCp*2 [Cp* = η(5)-pentamethylcyclopentadienyl]. The driving force for electron transfer from the reductant to the NCs was varied systematically by the addition of acid, which lowers the energy of the NC orbitals. In the presence of excess reductant, the number of electrons per NC (⟨ne(-)⟩) reaches a maximum, beyond which the addition of more acid has no effect. This ⟨ne(-)⟩max varies with the NC radius with an r(3) dependence, so the density of electrons (⟨Ne(-)⟩max) is constant over a range of NC sizes. ⟨Ne(-)⟩max = 4.4(1.0) × 10(20) cm(-3) for CoCp*2 and 1.3(0.5) × 10(20) cm(-3) for the weaker reducing agent, CrCp*2. Up until the saturation point, the addition of electrons is linear with respect to protons added. This linearity contrasts with the typical description of hydrogen atom-like states (S, P, etc.) in the conduction band. The 1:1 relationship of ⟨ne(-)⟩ with protons per NC and the dramatic dependence of ⟨Ne(-)⟩max on the nature of the cation (H(+) vs MCp*2(+)) suggest that the protons intercalate into the NCs under these conditions. The differences between the reductants, the volume dependence, calculations of the Fermi level using the redox couple, and a proposed model encompassing these effects are presented. This study illustrates the strong coupling between protons and electrons in ZnO NCs and shows that proton activity is a key parameter in nanomaterial energetics.


Journal of the American Chemical Society | 2015

Redox Potentials of Colloidal n-Type ZnO Nanocrystals: Effects of Confinement, Electron Density, and Fermi-Level Pinning by Aldehyde Hydrogenation.

Gerard M. Carroll; Alina M. Schimpf; Emily Y. Tsui; Daniel R. Gamelin

Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.


Biochemistry | 2014

Strength of axial water ligation in substrate-free cytochrome P450s is isoform dependent

Kip P. Conner; Alina M. Schimpf; Alex A. Cruce; Kirsty J. McLean; Andrew W. Munro; Daniel J. Frank; Matthew D. Krzyaniak; Paul R. Ortiz de Montellano; Michael K. Bowman; William M. Atkins

The heme-containing cytochrome P450s exhibit isoform-dependent ferric spin equilibria in the resting state and differential substrate-dependent spin equilibria. The basis for these differences is not well understood. Here, magnetic circular dichroism (MCD) reveals significant differences in the resting low spin ligand field of CYPs 3A4, 2E1, 2C9, 125A1, and 51B1, which indicates differences in the strength of axial water ligation to the heme. The near-infrared bands that specifically correspond to charge-transfer porphyrin-to-metal transitions span a range of energies of nearly 2 kcal/mol. In addition, the experimentally determined MCD bands are not entirely in agreement with the expected MCD energies calculated from electron paramagnetic resonance parameters, thus emphasizing the need for the experimental data. MCD marker bands of the high spin heme between 500 and 680 nm were also measured and suggest only a narrow range of energies for this ensemble of high spin Cys(S–) → Fe3+ transitions among these isoforms. The differences in axial ligand energies between CYP isoforms of the low spin states likely contribute to the energetics of substrate-dependent spin state perturbation. However, these ligand field energies do not correlate with the fraction of high spin vs low spin in the resting state enzyme, suggestive of differences in water access to the heme or isoform-dependent differences in the substrate-free high spin states as well.

Collaboration


Dive into the Alina M. Schimpf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia W. Cohn

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Delia J. Milliron

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge