Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alina Maloyan is active.

Publication


Featured researches published by Alina Maloyan.


Circulation | 2005

Mitochondrial Dysfunction and Apoptosis Underlie the Pathogenic Process in α-B-Crystallin Desmin-Related Cardiomyopathy

Alina Maloyan; Atsushi Sanbe; Hanna Osinska; Margaret V. Westfall; Dustin Robinson; Ken Ichi Imahashi; Elizabeth Murphy; Jeffrey Robbins

Background— Mitochondria and sarcomeres have a well-defined architectural relation that partially depends on the integrity of the cytoskeletal network. An R120G missense mutation in the small heat shock protein α-B-crystallin (CryAB) causes desmin-related cardiomyopathy. Desmin-related cardiomyopathy is characterized by the formation of intracellular aggregates containing CryAB and desmin that are amyloid positive, and disease can be recapitulated in transgenic mice by cardiac-specific expression of the mutant protein. Methods and Results— To understand the resultant pathology, we explored the acute effects of R120G expression both in vitro and in vivo. In vitro, transfection of adult cardiomyocytes with R120G-expressing adenovirus resulted in altered contractile mechanics. In vivo, as the cytoskeletal network is disturbed but before deficits in organ function can be detected, alterations in mitochondrial organization and architecture occur, leading to a reduction in the maximal rate of oxygen consumption with substrates that utilize complex I activity, alterations in the permeability transition pore, and compromised inner membrane potential. Apoptotic pathways are subsequently activated, which eventually results in cardiomyocyte death, dilation, and heart failure. Conclusions— Cardiac chaperone dysfunction acutely leads to altered cardiomyocyte mechanics, perturbations in mitochondrial-sarcomere architecture, and deficits in mitochondrial function, which can result in activation of apoptosis and heart failure.


Journal of Clinical Investigation | 2002

Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome

Yoram G. Weiss; Alina Maloyan; John Tazelaar; Nichelle Raj; Clifford S. Deutschman

The acute respiratory distress syndrome (ARDS) provokes three pathologic processes: unchecked inflammation, interstitial/alveolar protein accumulation, and destruction of pulmonary epithelial cells. The highly conserved heat shock protein HSP-70 can limit all three responses but is not appropriately expressed in the lungs after cecal ligation and double puncture (2CLP), a clinically relevant model of ARDS. We hypothesize that restoring expression of HSP-70 using adenovirus-mediated gene therapy will limit pulmonary pathology following 2CLP. We administered a vector containing the porcine HSP-70 cDNA driven by a CMV promoter (AdHSP) into the lungs of rats subjected to 2CLP or sham operation. Administration of AdHSP after either sham operation or 2CLP increased HSP-70 protein expression in lung tissue, as determined by immunohistochemistry and Western blot hybridization. Administration of AdHSP significantly attenuated interstitial and alveolar edema and protein exudation and dramatically decreased neutrophil accumulation, relative to a control adenovirus. CLP-associated mortality at 48 hours was reduced by half. Modulation of HSP-70 production reduces pathologic changes and may improve outcome in experimental ARDS.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999

Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress

Alina Maloyan; Aaron Palmon; Michal Horowitz

It has been previously shown that heat acclimation leads to an elevated basal level of 72-kDa heat shock protein (HSP72). Augmented expression of HSP72 is considered as a cytoprotective response. This led us to hypothesize that alterations in the heat shock protein (HSP) defense pathway are an integral part of the heat acclimation repertoire. To investigate this, we studied the temporal profile of basal HSP expression upon acclimation and the dynamics of their accumulation subsequent to acute heat stress (HS). In parallel, HSP72 mRNA level before and after HS was measured. For comparison, HSC mRNA [the constitutive member of 70-kDa HSP (HSP70) family] was measured in similar conditions. Heat acclimation was attained by continuous exposure of rats to 34°C for 0, 1, 2, and 30 days. HS was attained by exposure to 41 or 43°C for 2 h. Thermoregulatory capacity of the rats was defined by rectal temperature, heating rate, and the cumulative heat strain invoked during HS. HSP72 and HSP70 gene transcripts were measured in the left ventricle of the heart by means of Western immunoblotting and semiquantitative RT-PCR, respectively. The resultant acclimatory change comprised a higher resting level of the encoded 72-kDa protein (Δ175%, P < 0.0001). After HS, peak HSP72 mRNA level was attained, 40 and 20 min post-HS at 41 and 43°C, respectively, vs. 60 and 40 min in the nonacclimated group. The subsequent HSP synthesis, however, was dependent on the severity of the cumulative heat strain. At the initial phase of heat acclimation, augmented HSP72 transcription unaccompanied by HSP synthesis was observed. It is concluded that upon heat acclimation, the HSP defense pathway is predisposed to a faster response. At the initial phases of heat acclimation, inability to elevate the HSP cytosolic level rules out their direct cytoprotective role.


Placenta | 2012

MIR-210 modulates mitochondrial respiration in placenta with preeclampsia

Sribalasubashini Muralimanoharan; Alina Maloyan; James Mele; Chunming Guo; Louise G. Myatt; Leslie Myatt

Preeclampsia (PE) affects 5-8% of all pregnancies and is associated with significant maternal and fetal morbidity and mortality. Placental mitochondrial dysfunction has been reported in PE. MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression through mRNA degradation and translational repression. MiR-210 has been previously shown to be upregulated in placentas from pregnancies complicated by PE. We hypothesized that placental mitochondrial dysfunction during PE can be mediated by miR-210. Placentas were collected at term from normotensive pregnancies (CTRL) and those complicated by severe PE (n = 6 each) following c-section (no labor). Villous tissue from PE showed significantly increased levels of HIF-1α compared to CTRL with no change in corresponding mRNA expression but with reduced DNA-binding activity. Mitochondrial complex III was significantly decreased in PE along with significantly reduced protein expression in complex I and IV during PE. Among the four miRNAs tested, miR-210 showed significant up regulation in PE and significant downregulation of its target, ISCU mRNA. To understand the role of miR-210 in PE, loss- and gain-of-function studies were performed using primary trophoblasts. Trophoblasts were transfected with miR-210 inhibitor or pre-miR-210 and mitochondrial function was measured using Seahorse Extracellular Flux Analyzer. Cells transfected with pre-miR-210 showed significant reduction in oxygen consumption. In contrast, transfection of trophoblast with AntagomiR-210 was sufficient to prevent the DFO-mediated respiratory deficiency. These data collectively suggest that miR-210 overexpression during PE could be responsible for placental mitochondria dysfunction.


Circulation | 2008

Cardiomyocyte Expression of a Polyglutamine Preamyloid Oligomer Causes Heart Failure

J. Scott Pattison; Atsushi Sanbe; Alina Maloyan; Hanna Osinska; Raisa Klevitsky; Jeffrey Robbins

Background— To determine whether soluble preamyloid oligomers (PAOs) are toxic when expressed internally in the cardiomyocyte, we tested the hypothesis that cardiomyocyte-restricted expression and accumulation of a known PAO is cytotoxic and sufficient to cause heart failure. Methods and Results— Intracellular PAOs, the entities believed to cause toxicity in many neurodegenerative diseases, have been observed in cardiomyocytes derived from mouse and human heart failure samples. Long (>50) polyglutamine (PQ) repeats form PAOs and cause neurotoxicity in Huntington disease and other neurodegenerative diseases, whereas shorter PQ peptides are benign. We created transgenic mice in which cardiomyocyte-autonomous expression of an 83 residue–long PQ repeat (PQ83) or a non–amyloid-forming peptide of 19 PQ repeats (PQ19) as a nonpathological control was expressed. A PQ83 line with relatively low levels of expression was generated, along with a PQ19 line that expressed ≈9-fold the levels observed in the PQ83 line. Hearts expressing PQ83 exhibited reduced cardiac function and dilation by 5 months, and all mice died by 8 months, whereas PQ19 mice had normal cardiac function, morphology, and life span. PQ83 protein accumulated within aggresomes with PAO-specific staining. The PQ83 hearts showed increased autophagosomal and lysosomal content but also showed markers of necrotic death, including inflammatory cell infiltration and increased sarcolemmal permeability. Conclusions— The data confirm the hypothesis that expression of an exogenous PAO-forming peptide is toxic to cardiomyocytes and is sufficient to cause cardiomyocyte loss and heart failure in a murine model.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Exercise reverses preamyloid oligomer and prolongs survival in αB-crystallin-based desmin-related cardiomyopathy

Alina Maloyan; James Gulick; Charles G. Glabe; Rakez Kayed; Jeffrey Robbins

The R120G mutation in the small heat shock-like protein αB-crystallin (CryABR120G) causes desmin-related myopathy (DRM), which is characterized by the formation of desmin- and CryAB-containing aggregates within muscle fibers. Mice with cardiac-specific overexpression of CryABR120G develop cardiomyopathy at 3 months and die at 6–7 months from heart failure (HF). Previous studies showed that overexpression of CryABR120G results in accumulation of preamyloid oligomer (PAO). PAO is considered to be the cytotoxic entity in many of the protein misfolding-based neurodegenerative diseases. On the basis of data from mouse models of neurodegenerative diseases showing that exercise or environmental enrichment reduces the amyloid oligomer level and improves cognitive ability, we hypothesized that CryABR120G-induced DRM would also respond favorably to prolonged voluntary exercise, reducing HF symptoms and rescuing the mice from premature death. Six months of voluntary exercise in CryABR120G animals resulted in 100% survival at a time when all unexercised mice had died. After 22 weeks of exercise, PAO levels were decreased by 47% compared with the unexercised CryABR120G control mice (P = 0.00001). Although CryABR120G expression led to decreased levels of the metallomembrane endopeptidase neprilysin, normal levels were maintained in the exercised CryABR120G mice, and in vitro loss-of-function and gain-of-function experiments using adenovirus-infected cardiomyocytes confirmed the importance of neprilysin in ameliorating PAO accumulation. The data demonstrate that voluntary exercise slows the progression to HF in the CryABR120G DRM model and that PAO accumulation is mediated, at least in part, by decreased neprilysin activity.


American Journal of Physiology-endocrinology and Metabolism | 2014

Impaired mitochondrial function in human placenta with increased maternal adiposity

James Mele; Sribalasubashini Muralimanoharan; Alina Maloyan; Leslie Myatt

The placenta plays a key role in regulation of fetal growth and development and in mediating in utero developmental programming. Obesity, which is associated with chronic inflammation and mitochondrial dysfunction in many tissues, exerts a programming effect in pregnancy. We determined the effect of increasing maternal adiposity and of fetal sex on placental ATP generation, mitochondrial biogenesis, expression of electron transport chain subunits, and mitochondrial function in isolated trophoblasts. Placental tissue was collected from women with prepregnancy BMI ranging from 18.5 to 45 following C-section at term with no labor. Increasing maternal adiposity was associated with excessive production of reactive oxygen species and a significant reduction in placental ATP levels in placentae with male and female fetuses. To explore the potential mechanism of placental mitochondrial dysfunction, levels of transcription factors regulating the expression of genes involved in electron transport and mitochondrial biogenesis were measured. Our in vitro studies showed significant reduction in mitochondrial respiration in cultured primary trophoblasts with increasing maternal obesity along with an abnormal metabolic flexibility of these cells. This reduction in placental mitochondrial respiration in pregnancies complicated by maternal obesity could compromise placental function and potentially underlie the increased susceptibility of these pregnancies to fetal demise in late gestation and to developmental programming.


Circulation Research | 2010

Manipulation of death pathways in desmin-related cardiomyopathy

Alina Maloyan; Jennifer Sayegh; Hanna Osinska; Balvin H.L. Chua; Jeffrey Robbins

Rationale: Transgenic mice with cardiac specific overexpression of mutated &agr;B-crystallin (CryABR120G) display Desmin-related myopathy (DRM) with dilated cardiomyopathy and heart failure. Our previous studies showed the presence of progressive mitochondrial abnormalities and activation of apoptotic cell death in CryABR120G transgenic hearts. However, the role of mitochondrial dysfunction and apoptosis in the overall course of the disease was unclear. Objective: We tested the hypothesis that prevention of apoptosis would ameliorate CryABR120G pathology and decrease morbidity. Methods and Results: We crossed CryABR120G mice to transgenic mice with cardiac specific overexpression of Bcl-2. Sustained Bcl-2 overexpression in CryABR120G hearts prolonged CryABR120G transgenic mice survival by 20%. This was associated with decreased mitochondrial abnormalities, restoration of cardiac function, prevention of cardiac hypertrophy, and attenuation of apoptosis. CryABR120G misfolded protein aggregation was significantly reduced in the double transgenic. However, inhibition of apoptotic signaling resulted in the upregulation of autophagy and alternative death pathways, the net result being increased necrosis. Conclusion: Although Bcl-2 overexpression prolonged life in this DRM model, in the absence of apoptosis, another death pathway was activated.


Physiological Genomics | 2013

Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity.

Alina Maloyan; Sribalasubashini Muralimanoharan; Steven Huffman; Laura A. Cox; Peter W. Nathanielsz; Leslie Myatt; Mark J. Nijland

Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.


Circulation Research | 2009

Biochemical and Mechanical Dysfunction in a Mouse Model of Desmin-Related Myopathy

Alina Maloyan; Hanna Osinska; Jan Lammerding; Richard T. Lee; Oscar H. Cingolani; David A. Kass; John N. Lorenz; Jeffrey Robbins

An R120G mutation in &agr;B-crystallin (CryABR120G) causes desmin-related myopathy (DRM). In mice with cardiomyocyte-specific expression of the mutation, CryABR120G-mediated DRM is characterized by CryAB and desmin accumulations within cardiac muscle, mitochondrial deficiencies, activation of apoptosis, and heart failure (HF). Excessive production of reactive oxygen species (ROS) is often a hallmark of HF and treatment with antioxidants can sometimes prevent the progression of HF in terms of contractile dysfunction and cardiomyocyte survival. It is unknown whether blockade of ROS is beneficial for protein misfolding diseases such as DRM. We addressed this question by blocking the activity of xanthine oxidase (XO), a superoxide-generating enzyme that is upregulated in our model of DRM. The XO inhibitor oxypurinol was administered to CryABR120G mice for a period of 1 or 3 months. Mitochondrial function was dramatically improved in treated animals in terms of complex I activity and conservation of mitochondrial membrane potential. Oxypurinol also largely restored normal mitochondrial morphology. Surprisingly, however, cardiac contractile function and cardiac compliance were unimproved, indicating that the contractile deficit might be independent of mitochondrial dysfunction and the initiation of apoptosis. Using magnetic bead microrheology at the single cardiomyocyte level, we demonstrated that sarcomeric disarray and accumulation of the physical aggregates resulted in significant changes in the cytoskeletal mechanical properties in the CryABR120G cardiomyocytes. Our findings indicate that oxypurinol treatment largely prevented mitochondrial deficiency in DRM but that contractility was not improved because of mechanical deficits in passive cytoskeletal stiffness.

Collaboration


Dive into the Alina Maloyan's collaboration.

Top Co-Authors

Avatar

Leslie Myatt

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Sribalasubashini Muralimanoharan

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Robbins

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michal Horowitz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Hanna Osinska

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Atsushi Sanbe

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chunming Guo

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

James Mele

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Suba Muralimanoharan

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge