Aline Beckenkamp
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aline Beckenkamp.
Molecular Biology of the Cell | 2014
Paola A. Mello; Eduardo Cremonese Filippi-Chiela; Jéssica Nascimento; Aline Beckenkamp; Danielle Bertodo Santana; Franciele Cristina Kipper; Emerson André Casali; Alessandra Nejar Bruno; Juliano D. Paccez; Luiz F. Zerbini; Márcia Rosângela Wink; Guido Lenz; Andréia Buffon
Cervical cancer cells respond to high extracellular ATP. There is cooperation between ATP and its metabolites with regard to cytotoxicity, with adenosine necessary, but not sufficient, to induce cell death in the whole population of cells, which is significant in the context of cancer therapeutics.
Biomedicine & Pharmacotherapy | 2015
Samuel Davies; Aline Beckenkamp; Andréia Buffon
Cancer stem cells (CSCs) comprise a tumor subpopulation responsible for tumor maintenance, resistance to chemotherapy, recurrence and metastasis. The identification of this cell group is very important, but there is still no consensus on its characterization. Several CSC markers have been described, like CD133, CD24, CD44 and ALDH1, but more research to identify new markers to facilitate the identification of CSC in a heterogeneous tumoral mass is required. Thus, this article describes the CD26 expression as a CSC marker and the role that it plays in different types of cancer. CD26 expression correlates with some characteristics of CSCs, like the formation of spheres in vitro, formation of new tumors, and resistance to chemotherapy. CD26 is therefore suggested as an auxiliary marker for CSC in different types of cancer, and as a potential therapeutic target.
International Journal of Nanomedicine | 2014
Márcia Camponogara Fontana; Aline Beckenkamp; Andréia Buffon; Ruy Carlos Ruver Beck
Raloxifene hydrochloride (RH) is considered to be an antiproliferative agent of mammary tissue. The aim of this study was to investigate the effect of the encapsulation of RH in polymeric nanocapsules with anionic or cationic surface on its release profile and antiproliferative activity. They were prepared by interfacial deposition of preformed polymer, followed by wide physicochemical characterization. The in vitro RH release was assessed by the dialysis membrane method and the data analyzed by mathematical modeling. The antiproliferative effect on MCF-7 cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as well as by counting viable cells. They had high encapsulation efficiency, low polydispersity, and nanometric mean size. Nanocapsules prepared with Eudragit® RS100 and Eudragit® S100 presented positive and negative zeta potentials, respectively. Drug release studies demonstrated controlled release of RH from anionic nanocapsules, which could be explained due to a stronger interaction of the drug to these nanocapsules and the larger amount of entrapped drug. On the other hand, this control was not observed from cationic nanocapsules due to the larger amount of drug adsorbed onto their surface. MCF-7 cell viability studies and cell counting showed that RH-loaded Eudragit® RS100 nanocapsules promote the best antiproliferative activity after 24 hours of treatment, whereas the best activity was observed for RH-loaded Eudragit® S100 nanocapsules after 72 hours. Furthermore, the combined treatment of these formulations improved the antiproliferative effect during the entire treatment.
Tumor Biology | 2016
Aline Beckenkamp; Samuel Davies; Julia Biz Willig; Andréia Buffon
Dipeptidyl peptidase IV (DPPIV/CD26) is a multifunctional protein with intrinsic peptidase activity that inactivates or degrades some bioactive peptides. It is the main cellular binding protein for ecto-adenosine deaminase and interacts with extracellular matrix proteins, besides participating in different signaling pathways. Due to these multiple functions, DPPIV/CD26 has been shown to be closely related to the tumor process. It has been reported that the progression of certain types of cancer is accompanied by a decrease in DPPIV/CD26 expression, and studies have shown that the malignant phenotype can be reverted when DPPIV/CD26 expression is induced in these cancer cells, characterizing this protein as a tumor suppressor. On the other hand, DPPIV/CD26 was described as a protein associated with invasion and metastatic spread, characterizing it as a marker of malignancy. Thus, this review explores the roles of DPPIV/CD26 expression in tumor progression in different types of cancer and demonstrates the importance of this protein as a promising therapeutic target and tumor biomarker.
Journal of Ethnopharmacology | 2015
Gabriela C. Alerico; Aline Beckenkamp; Márcia Vignoli-Silva; Andréia Buffon; Gilsane Lino von Poser
ETHNOPHARMACOLOGICAL RELEVANCE Wounds are normally resolved in a few days, but chronic wounds represent a major burden because of economic and social factors. Thereby, the search for new agents is ongoing and natural products become a great target. Also, Brazil as a consumer of herbal medicines with rich social diversity is promising for ethnopharmacological studies. AIMS OF THE STUDY The study aims to find the plants popularly used for wound healing purposes in Rio Grande do Sul state, and test the traditional knowledge through an in vitro screening. MATERIALS AND METHODS Ethnobotanical studies from state of Rio Grande do Sul were analyzed to find the most used plants to treat wounds. The selected species were collected, identified and ethanolic and aqueous extracts were prepared. After, proliferative capacity was accessed by MTT assay in a keratinocyte cell line (HaCaT). RESULTS The survey comprehended almost all state regions and led to 117 plant species from 85 genera, from which 14 were selected for in vitro testing. Aqueous extracts from Achyrocline satureioides DC Lam., Matricaria recutita L., Melia azedarach L. and Mirabilis jalapa L. demonstrated the ability to stimulate keratinocyte growth up to 120% in concentrations of 25 µg/mL and 50 µg/mL. The ethanolic extract of A. satureioides was able to stimulate keratinocyte and fibroblast proliferation on the lower concentration tested, 1 µg/mL, being the most promising species. CONCLUSIONS The traditional knowledge collected from the ethnobotanical studies was accessed by in vitro investigation and extracts from Achyrocline satureioides, Matricaria recutita, Melia azedarach and Mirabilis jalapa can influence positively cell proliferation.
PLOS ONE | 2015
Aline Beckenkamp; Julia Biz Willig; Danielle Bertodo Santana; Jéssica Nascimento; Juliano D. Paccez; Luiz F. Zerbini; Alessandra Nejar Bruno; Diogo André Pilger; Márcia Rosângela Wink; Andréia Buffon
Dipeptidyl peptidase IV (DPPIV/CD26) is a transmembrane glycoprotein that inactivates or degrades some bioactive peptides and chemokines. For this reason, it regulates cell proliferation, migration and adhesion, showing its role in cancer processes. This enzyme is found mainly anchored onto the cell membrane, although it also has a soluble form, an enzymatically active isoform. In the present study, we investigated DPPIV/CD26 activity and expression in cervical cancer cell lines (SiHa, HeLa and C33A) and non-tumorigenic HaCaT cells. The effect of the DPPIV/CD26 inhibitor (sitagliptin phosphate) on cell migration and adhesion was also evaluated. Cervical cancer cells and keratinocytes exhibited DPPIV/CD26 enzymatic activity both membrane-bound and in soluble form. DPPIV/CD26 expression was observed in HaCaT, SiHa and C33A, while in HeLa cells it was almost undetectable. We observed higher migratory capacity of HeLa, when compared to SiHa. But in the presence of sitagliptin SiHa showed an increase in migration, indicating that, at least in part, cell migration is regulated by DPPIV/CD26 activity. Furthermore, in the presence of sitagliptin phosphate, SiHa and HeLa cells exhibited a significant reduction in adhesion. However this mechanism seems to be mediated independent of DPPIV/CD26. This study demonstrates, for the first time, the activity and expression of DPPIV/CD26 in cervical cancer cells and the effect of sitagliptin phosphate on cell migration and adhesion.
Materials Science and Engineering: C | 2017
Michelli Barcelos Antonow; Ana Carolina Cavazzin Asbahr; Paula Raddatz; Aline Beckenkamp; Andréia Buffon; Silvia Stanisçuaski Guterres; Adriana Raffin Pohlmann
Cancer is a major public health problem in the world, being breast cancer the most frequent cancer affecting women. Despite advances in detection and treatment, mortality rates remain high. Therefore, new approaches for breast cancer treatments are necessary. In this study, our objective was to develop a liquid formulation containing doxorubicin-loaded lipid-core nanocapsules (DOX-LNC), to evaluate the in vitro antiproliferative activity and to determine the nanocapsules uptake by MCF-7 cells. Lipid-core nanocapsules (LNC), blank formulation, and DOX-LNC, proposed treatment, were prepared by self-assembling using the solvent displacement method. Hydrodynamic mean diameters (z-average) were respectively 191±31nm and 230±23nm presenting narrow size distributions. Drug content was 0.102±0.029mgmL-1 with an encapsulation efficiency higher than 90%. Formulations were applied to semiconfluent MCF-7 cells. After 24h, LNC showed no cytotoxicity, while DOX-LNC showed an IC50 of 4.49 micromolar. After 72h of incubation, DOX-LNC showed an IC50 of 1.60 micromolar demonstrating a sustained effect. The nanocapsules were internalized by endocytosis mediated by caveolin and by fluid phase endocytosis, which are active transport mechanisms. In conclusion, the liquid formulation containing DOX-LNC showed to be a promising product for the breast cancer treatment opening new avenues for further in vivo studies.
Phytotherapy Research | 2017
Henrique Bridi; Aline Beckenkamp; Gari Vidal Ccana-Ccapatinta; Sergio Augusto de Loreto Bordignon; Andréia Buffon; Gilsane Lino von Poser
In this study, a phytochemical and biological investigation on five South Brazilian Hypericum species (Hypericum caprifoliatum, Hypericum carinatum, Hypericum connatum, Hypericum myrianthum, and Hypericum polyanthemum) was carried out. The phloroglucinol‐enriched fractions (PEF) of the flowering aerial parts were analyzed by high‐performance liquid chromatography for the content of uliginosin A (1), japonicin A (2), uliginosin B (3), hyperbrasilol B (4), and the three benzopyrans, that is, 6‐isobutyryl‐5,7‐dimethoxy‐2,2‐dimethyl‐benzopyran (HP1) (5), 7‐hydroxy‐6‐isobutyryl‐5‐methoxy‐2,2‐dimethyl‐benzopyran (HP2) (6), and 5‐hydroxy‐6‐isobutyryl‐7‐methoxy‐2,2‐dimethyl‐benzopyran (HP3) (7). After chemical characterization, the PEF were assayed for cell proliferation on human keratinocyte cell line by MTT. The H. carinatum and H. polyanthemum PEF demonstrated better results with an increase in cell proliferation (138.7% and 120.6%, respectively). The cell counting and Ki‐67 assay with H. carinatum PEF confirmed the MTT results. The cell cycle distribution indicates an increase in the cells at S and G2/M phases, which is indicative of proliferation induction. In summary, the results indicate an induction of HaCaT proliferation by the treatment with H. carinatum PEF (at 10 and 15 µg/mL), suggesting a possible use as wound healing agent. Copyright
Biomedicine & Pharmacotherapy | 2017
J. Krai; Aline Beckenkamp; M.M. Gaelzer; Adriana Raffin Pohlmann; Guterres Ss; E.C. Filippi-Chiela; Christianne Gazzana Salbego; Andréia Buffon; Ruy Carlos Ruver Beck
Doxazosin has been evaluated for the treatment of several types of cancer. Here, the antitumor effect of the nanoencapsulated form of doxazosin was evaluated in an in vitro model of breast cancer (MCF7 cell line). Doxazosin-loaded polymeric nanocapsules (DXZ-NC) were produced by interfacial deposition of preformed polymer with homogeneous aspect, spherical shape, mean diameter of about 130nm, positive zeta potential (+5mV), and encapsulation efficiency close to 35%. The Alamar Blue® assay and cell counting were carried out to assess cell viability and cell number, respectively. Mechanism of death was evaluated by Annexin/Propidium Iodide staining, while the long-term response was assessed using the clonogenic assay. Nuclear morphometric analysis was investigated using the NMA technique. A significant decrease in cell viability and clonogenicity was observed after the treatment with DXZ-NC when compared to the non-encapsulated drug. All treatments induced apoptosis as the main mechanism of toxicity. In conclusion, the nanoencapsulation of doxazosin improved its in vitro effects in MCF7 cells, without changing the mechanism of cell death underlying its toxicity. This approach was fundamental to reduce the long-term in vitro ability of the remaining tumor cells to form new colonies after the treatment, potentially reducing the risk of tumor recurrence.
Nanomaterials | 2018
Catiúscia de Oliveira; Sabrina Laíz Büttenbender; Willian Prado; Aline Beckenkamp; Ana Carolina Cavazzin Asbahr; Andréia Buffon; Silvia Stanisçuaski Guterres; Adriana Raffin Pohlmann
Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.
Collaboration
Dive into the Aline Beckenkamp's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs