Aline Boveto Santamarina
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aline Boveto Santamarina.
Journal of Nutritional Biochemistry | 2015
Aline Boveto Santamarina; Milena Carvalho-Silva; Lara M. Gomes; Marcos Hiromu Okuda; Aline Alves de Santana; Emilio L. Streck; Marília Seelaender; Claudia Maria Oller do Nascimento; Eliane B. Ribeiro; Fábio Santos Lira; Lila Missae Oyama
Nonalcoholic fatty liver disease has been considered the hepatic manifestation of obesity. It is unclear whether supplementation with green tea extract rich in epigallocatechin-3-gallate (EGCG) influences the activity of mitochondrial respiratory chain complexes and insulin resistance in the liver. EGCG regulated hepatic mitochondrial respiratory chain complexes and was capable of improving lipid metabolism, attenuating insulin resistance in obese mice. Mice were divided into four groups: control diet+water (CW) or EGCG (CE) and hyperlipidic diet+water (HFW) or EGCG (HFE). All animals received water and diets ad libitum for 16 weeks. Placebo groups received water (0.1 ml/day) and EGCG groups (0.1 ml EGCG and 50 mg/kg/day) by gavage. Cytokines concentrations were obtained by ELISA, protein expression through Western blotting and mitochondrial complex enzymatic activity by colorimetric assay of substrate degradation. HFW increased body weight gain, adiposity index, retroperitoneal and mesenteric adipose tissue relative weight, serum glucose, insulin and Homeostasis Model Assessment of Basal Insulin Resistance (HOMA-IR); glucose intolerance was observed in oral glucose tolerance test (OGTT) as well as ectopic fat liver deposition. HFE group decreased body weight gain, retroperitoneal and mesenteric adipose tissue relative weight, HOMA-IR, insulin levels and liver fat accumulation; increased complexes II-III and IV and malate dehydrogenase activities and improvement in glucose uptake in OGTT and insulin sensitivity by increased protein expression of total AKT, IRα and IRS1. We did not find alterations in inflammatory parameters analyzed. EGCG was able to prevent obesity stimulating the mitochondrial complex chain, increasing energy expenditure, particularly from the oxidation of lipid substrates, thereby contributing to the prevention of hepatic steatosis and improved insulin sensitivity.
PLOS ONE | 2015
Aline Boveto Santamarina; Juliana L. Oliveira; Fernanda Pinheiro Silva; June Carnier; Laís Vales Mennitti; Aline Alves de Santana; Gabriel H. I. de Souza; Eliane B. Ribeiro; Claudia Maria Oller do Nascimento; Fábio Santos Lira; Lila Missae Oyama
Supplementation with epigallocatechin-3-gallate has been determined to aid in the prevention of obesity. Decaffeinated green tea extract appears to restore a normal hepatic metabolic profile and attenuate high-fat diet (HFD)-induced effects, thereby preventing non-alcoholic fatty liver disease in mice. Mice were maintained on either a control diet (CD) or HFD for 16 weeks and supplemented with either water or green tea extract (50 mg/kg/day). The body mass increase, serum adiponectin level, and lipid profile were measured over the course of the treatment. Furthermore, the AMPK pathway protein expression in the liver was measured. From the fourth week, the weight gain in the CD + green tea extract (CE) group was lower than that in the CD + water (CW) group. From the eighth week, the weight gain in the HFD + water (HFW) group was found to be higher than that in the CW group. Moreover, the weight gain in the HFD + green tea extract (HFE) group was found to be lower than that in the HFW group. Carcass lipid content was found to be higher in the HFW group than that in the CW and HFE groups. Serum analysis showed reduced non-esterified fatty acid level in the CE and HFE groups as compared with their corresponding placebo groups. Increased adiponectin level was observed in the same groups. Increased VLDL-TG secretion was observed in the HFW group as compared with the CW and HFE groups. Increased protein expression of AdipoR2, SIRT1, pLKB1, and pAMPK was observed in the HFE group, which explained the reduced expression of ACC, FAS, SREBP-1, and ChREBP in this group. These results indicate that the effects of decaffeinated green tea extract may be related to the activation of AMPK via LKB1 in the liver of HFD-fed mice.
Journal of Nutritional Biochemistry | 2014
Marcos Hiromu Okuda; Juliane C.S. Zemdegs; Aline Alves de Santana; Aline Boveto Santamarina; Mayara Franzoi Moreno; Ana Claudia Losinskas Hachul; Bruno dos Santos; Claudia Maria Oller do Nascimento; Eliane Beraldi Ribeiro; Lila Missae Oyama
To investigate possible mechanisms of green teas anti-obesity and anti-diabetic effects in the hypothalamus, the central regulator of metabolism, of mice fed with high-fat diet (HFD), we analyzed proteins of the toll-like receptor 4 (TLR4) pathway and serotoninergic proteins involved in energy homeostasis. Thirty-day-old male Swiss mice were fed with HFD rich in saturated fat and green tea extract (GTE) for 8 weeks. After that, body weight and mass of fat depots were evaluated. Oral glucose tolerance test was performed 3 days prior to euthanasia; serum glucose, insulin and adiponectin were measured in fasted mice. Hypothalamic TLR4 pathway proteins, serotonin receptors 1B and 2C and serotonin transporter were analyzed by Western blotting or enzyme-linked immunosorbent assay. A second set of animals was used to measure food intake in response to fluoxetine, a selective serotonin reuptake inhibitor. Mice fed with HFD had increased body weight and mass of fat depots, impaired oral glucose tolerance, elevated glucose and insulin and decreased adiponectin serum levels. TLR4, IκB-α, nuclear factor κB p50 and interleukin 6 were increased by HFD. Concomitant GTE treatment ameliorated these parameters. The serotoninergic system remained functional after HFD treatment despite a few alterations in protein content of serotonin receptors 1B and 2C and serotonin transporter. In summary, the GTE attenuated the deleterious effects of the HFD investigated in this study, partially due to reduced hypothalamic inflammation.
Journal of Nutritional Biochemistry | 2015
Aline Alves de Santana; Aline Boveto Santamarina; Gabriel Inácio de Morais Honorato de Souza; Laís Vales Mennitti; Marcos Hiromu Okuda; Daniel Paulino Venancio; Marília Seelaender; Claudia Oller do Nascimento; Eliane B. Ribeiro; Fábio Santos Lira; Lila Missae Oyama
Supplementation with epigallocatechin-3-gallate (EGCG), which restores metabolic profiles, has been proposed as an option for preventing and treating obesity. We investigated whether decaffeinated green tea extract rich in EGCG, attenuates high-fat diet (HFD)-induced metabolic alterations in Swiss mice. The mice were maintained on either a control diet (CD) or HFD for 8 weeks and supplemented with either a placebo or EGCG (50mg/kg/day). Body weight, serum lipid profiles, cytokine protein expression, and content in epididymal (EPI) and retroperitoneal (RET) adipose tissues, and adipocyte area were measured. The body weights of HFD + placebo-fed mice were increased compared with those of HFD + EGCG-fed mice (28 and 21%, respectively), whereas the body weights of CD + EGCG-fed mice were decreased 16% compared with those of the CD + placebo group. Serum triglyceride levels were decreased 32% in the CD + EGCG group compared with the CD + placebo group. Compared with the CD + placebo group, increased phosphorylation of AMPK and hormone-sensitive lipase in EPI and RET, respectively, was found in the CD + EGCG group. Increased acetyl-CoA carboxylase phosphorylation was observed in both adipose tissues. In addition, TNF-α and IL-10 levels in EPI and adiponectin levels were higher in the CD + EGCG group than in the CD + placebo group. TNF-α levels were lower in the HFD + EGCG group than in the HFD + placebo group. Furthermore, the CD + EGCG group exhibited a lower adipocyte area than the CD + placebo group. These indicate that the effects of decaffeinated green tea extract on body mass may be related to the crosstalk between lipolytic and inflammatory pathways in normolipidic diet-fed mice but not in HFD-fed mice.
British Journal of Nutrition | 2015
Renata Marciano; Aline Boveto Santamarina; Aline Alves de Santana; Maisa de Lima Correia Silva; Olga Maria Silverio Amancio; Claudia Maria Oller do Nascimento; Lila Missae Oyama; Mauro Batista de Morais
Prebiotics may increase intestinal Fe absorption in anaemic growing rats. The present study evaluated the effects of high-performance (HP) inulin and oligofructose on factors that regulate Fe absorption in anaemic rats during the growth phase. Male Wistar rats aged 21 d of age were fed AIN-93G ration without Fe for 2 weeks to induce Fe-deficiency anaemia. The rats were fed on day 35 a control diet, or a diet with 10 % HP inulin, or a diet with 10 % oligofructose, without Fe supplementation. The animals were euthanised after 2 weeks, and segments of the duodenum, caecum, colon and liver were removed. The expression levels of proteins in the intestinal segments were assessed using Western blotting. The levels of serum, urine and liver hepcidin and the concentrations of IL-10, IL-6 and TNF-α in the caecum, colon and liver were measured using the ELISA test. HP inulin increased the expression of the divalent metal transporter 1 protein in the caecum by 162 % (P= 0·04), and the expression of duodenal cytochrome b reductase in the colon by 136 % (P= 0·02). Oligofructose decreased the expression of the protein ferroportin in the duodenum (P= 0·02), the concentrations of IL-10 (P= 0·044), IL-6 (P= 0·036) and TNF-α (P= 0·004) in the caecum, as well as the level of urinary hepcidin (P< 0·001). These results indicate that prebiotics may interfere with the expression of various intestinal proteins and systemic factors involved in the regulation of intestinal Fe absorption in anaemic rats during the growth phase.
Mediators of Inflammation | 2014
Bruno Rodrigues; Aline Alves de Santana; Aline Boveto Santamarina; Lila Missae Oyama; Érico Chagas Caperuto; Cláudio T. De Souza; Catarina de Andrade Barboza; Leandro Yanase Rocha; Diego Figueroa; Cristiano Mostarda; Maria Claudia Irigoyen; Fábio Santos Lira
The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.
Journal of Nutritional Biochemistry | 2016
Deborah Cristina Landi Masquio; Aline de Piano-Ganen; Lila Missae Oyama; Raquel Munhoz da Silveira Campos; Aline Boveto Santamarina; Gabriel Inácio de Morais Honorato de Souza; Aline D. Gomes; Renata Guimarães Moreira; Flávia Campos Corgosinho; Claudia Maria Oller do Nascimento; Lian Tock; Sergio Tufik; Marco Túlio de Mello; Ana R. Dâmaso
The purpose of the present study was to evaluate if interdisciplinary therapy can influence the cardiometabolic and serum free fatty acid profile. The second aim was to evaluate if there is an association between serum free fatty acids, inflammation and cardiometabolic biomarkers in obese adolescents with and without metabolic syndrome submitted to a long-term interdisciplinary therapy. The study involved 108 postpuberty obese adolescents, who were divided according to metabolic syndrome (MetS) diagnosis: MetS (n=32) and Non-MetS (n=76). The interdisciplinary therapy consisted of a 1-year period of nutrition, psychology, physical exercise and clinical support. After therapy, both groups improved metabolic, inflammatory (leptin, adiponectin, leptin/adiponectin ratio, adiponectin/leptin ratio and C-reactive protein) and cardiometabolic profile (PAI-1 and ICAM). Metabolic syndrome prevalence reduced from 28.70% to 12.96%. Both groups reduced myristic acid (C14:0) and increased docosahexaenoic acid (DHA, C22:6n3), heneicosapentaenoic acid (HPA, C21:5n3) and arachidonic acid (C20:4n6). After adjustment for metabolic syndrome and the number of metabolic syndrome parameters, multiple regression analysis showed that changes in VCAM and PAI-1 were negatively associated with changes in cis-linoleic acid (C18:2n6c). Additionally, changes in trans-linoleic acid (C18:2n6t) were also positively associated with these biomarkers. Moreover, leptin and leptin/adiponectin ratio were negatively associated with changes in docosapentaenoic acid (DPA, C22:5n3) and stearidonic acid (SDA, C18:4n3). Adiponectin/leptin ratio was positively associated with docosapentaenoic acid (DPA, C22:5n3). Changes in adiponectin were positively correlated with changes in omega 3, such as heneicosapentaenoic acid (HPA, C21:5n3) and docosapentaenoic acid (DPA, C22:5n3). Results support that interdisciplinary therapy can control inflammatory and cardiometabolic profile in obese adolescents. Moreover, serum fatty acids can be influenced by lifestyle changes and are able to modulate these biomarkers.
Mediators of Inflammation | 2014
Edson A. Lima; Loreana Sanches Silveira; Laureane Nunes Masi; Amanda R. Crisma; Mariana Rodrigues Davanso; Gabriel I. G. Souza; Aline Boveto Santamarina; Renata Guimarães Moreira; Amanda R. Martins; Luís Gustavo Oliveira de Sousa; Sandro Massao Hirabara; José C. Rosa Neto
Excess of saturated fatty acids in the diet has been associated with obesity, leading to systemic disruption of insulin signaling, glucose intolerance, and inflammation. Macadamia oil administration has been shown to improve lipid profile in humans. We evaluated the effect of macadamia oil supplementation on insulin sensitivity, inflammation, lipid profile, and adipocyte size in high-fat diet (HF) induced obesity in mice. C57BL/6 male mice (8 weeks) were divided into four groups: (a) control diet (CD), (b) HF, (c) CD supplemented with macadamia oil by gavage at 2 g/Kg of body weight, three times per week, for 12 weeks (CD + MO), and (d) HF diet supplemented with macadamia oil (HF + MO). CD and HF mice were supplemented with water. HF mice showed hypercholesterolemia and decreased insulin sensitivity as also previously shown. HF induced inflammation in adipose tissue and peritoneal macrophages, as well as adipocyte hypertrophy. Macadamia oil supplementation attenuated hypertrophy of adipocytes and inflammation in the adipose tissue and macrophages.
Lipids in Health and Disease | 2014
Laís Vales Mennitti; Lila Missae Oyama; Juliana de Oliveira; Ana Claudia Losinskas Hachul; Aline Boveto Santamarina; Aline Alves de Santana; Marcos Hiromu Okuda; Eliane B. Ribeiro; Claudia Maria Oller do Nascimento; Luciana Pellegrini Pisani
BackgroundPreviously, we showed that the intake of trans fatty acids during pregnancy and lactation triggers a pro-inflammatory status in the offspring. On the other hand, prebiotics can alter the intestinal environment, reducing serum lipopolysaccharides (LPS) concentrations. This study evaluated the effect of the oligofructose 10% diet supplementation in the presence or absence of hydrogenated vegetable fat during pregnancy and lactation on the development, endotoxemia and bacterial composition of 21-d-old offspring.MethodsOn the first day of pregnancy rats were divided into four groups: control diet (C), control diet supplemented with 10% oligofructose (CF), diet enriched with hydrogenated vegetable fat, rich in TFA (T) or diet enriched with hydrogenated vegetable fat supplemented with 10% oligofructose (TF). Diets were maintained during pregnancy and lactation. At birth, 7th, 14th and 21th, pups were weighed and length was measured. Serum concentrations of LPS and free fatty acids (FFA) were performed by specific kits. Bacterial DNA present in faeces was determined by real-time PCR. Data were expressed as mean ± standard error of the mean and the statistical analysis was realized by ANOVA two-way and ANOVA for repeated measures. p < 0.05 was considered significant.ResultsWe observed that the oligofructose (10%) supplementation during pregnancy and lactation reduced body weight, body weight gain, length and serum FFA in the CF and TF group compared to C and T group respectively, of the 21-day-old offspring, accompanied by an increase in serum LPS and genomic DNA levels of lactobacillus spp. on faeces of the CF group in relation to C group.ConclusionIn conclusion, dam’s diet supplementation with 10% of oligofructose during pregnancy and lactation, independent of addition with hydrogenated vegetable fat, harms the offspring development, alters the bacterial composition and increases the serum concentrations of lipopolysaccharides in 21d-old pups.
Journal of Cellular Biochemistry | 2018
Veronica Quispe Yujra; Hanna Karen Moreira Antunes; Marcos Mônico-Neto; Luciana Pellegrini Pisani; Aline Boveto Santamarina; Hannaniah Tardivo Quintana; Flavia de Oliveira; Celina Tizuko Fujiyama Oshima; Daniel Araki Ribeiro
The aim of this study was to evaluate the Toll like signaling pathway and atrophy after sleep deprivation (SD) in rat masticatory muscles: masseter and temporal. A total of 24 animals was distributed into three groups: Control group (CTL, n = 8), subjected to SD for 96 h (SD96, n = 8) and subjected to SD for 96 h more 96 h of sleep recovery (SD96 + R, n = 8). Histopathological analysis revealed the presence of acute inflammatory cells, congested vessels, fibrosis, and high cellularity in the skeletal muscle fibers from masseter and temporal submitted to SD. These morphological alterations were not observed in the control group since neither inflammatory cells nor congested vessels were observed to this group. In the group SD96 + R, the absence of inflammation was noticed to the masseter only. In this group, COX‐2 and TNF‐alpha downregulation were detected when comparing to control group. MyD88 and pIKK decreased in SD96 and SD96 + R groups being pNFKBp50 downregulatated in SD96 + R. MyD88 expression increased in rats submitted to SD96 and SD96 + R in temporal when compared to control group. On the other hand, pIKK decreased the protein expression in groups SD96 and SD96 + R while pNFKBp50 showed a decreased protein expression in group SD96 only. The activation of atrophy by means of MAFbx upregulation was detected in temporal muscle in SD96 and SD96 + R when compared to control. In summary, our results show that SD is able to induce morphological alterations in rat masticatory muscles. Toll like signaling pathway and atrophy play important roles in ethiopathogenesis induced by SD, being dependent of skeletal muscle type.
Collaboration
Dive into the Aline Boveto Santamarina's collaboration.
Gabriel Inácio de Morais Honorato de Souza
Federal University of São Paulo
View shared research outputs